具体函数介绍
导入
from keras.preprocessing.image import ImageDataGenerator
直接上例子
ImageDataGenerator
train_datagen = ImageDataGenerator(
datagen = ImageDataGenerator(
#图片随机翻转的角度
rotation_range=10,
#图片随机水平偏移的幅度
width_shift_range=0.2,
#图片随机垂直偏移的幅度
height_shift_range=0.2,
#执行其他处理前乘到整个图像上
rescale=1./255,
#剪切强度
shear_range=0.2,
#随机放大
zoom_range=0.2,
#随机水平翻转
horizontal_flip=True,
fill_mode='nearest')
)
datagen.fit
计算依赖于数据的变换所需要的统计信息
flow:
flow(self, X, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix=’’, save_format=‘png’):接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据
x:样本数据,