keras ImageDataGenerator类-(2)--flow()

本文深入探讨了Keras中的ImageDataGenerator类,特别是`flow()`方法的使用。`flow()`函数用于从numpy数组中生成增强或标准化的批次数据,用于深度学习模型的训练。它接受参数如`batch_size`、`shuffle`和`save_to_dir`等,允许数据增强后的可视化。通过示例代码展示了如何应用这个方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方文档

具体函数介绍
导入

from keras.preprocessing.image import ImageDataGenerator

直接上例子

ImageDataGenerator

train_datagen = ImageDataGenerator(

datagen = ImageDataGenerator(
        #图片随机翻转的角度
        rotation_range=10,
        #图片随机水平偏移的幅度
        width_shift_range=0.2,
        #图片随机垂直偏移的幅度
        height_shift_range=0.2,
        #执行其他处理前乘到整个图像上
        rescale=1./255,
        #剪切强度
        shear_range=0.2,
        #随机放大
        zoom_range=0.2,
        #随机水平翻转
        horizontal_flip=True,
        fill_mode='nearest')
)

datagen.fit

计算依赖于数据的变换所需要的统计信息


flow:

flow(self, X, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix=’’, save_format=‘png’):接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据

x:样本数据,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值