Pytorch基本知识

model.state_dict()、model.parameters()和model.named_parameters()的区别

parameters()只包含模块的参数,即weight和bias(包括BN的)。
named_parameters()返回包含模块名和模块的参数的列表,列表的每个元素均是包含layer name和layer param的元组。layer param就是parameters()的内容。
state_dict()返回包含模块整个状态的字典,除model.parameters()外,还包括model.buffer()如running_mean、running_var等BN相关参数。保存参数时需保存state_dict()。
值得注意的是,model.state_dict()所存储的模型参数tensor的require_grad都是False,而model.named_parameters()模型参数中的require_grad属性都是True。

加载模型

model=ResNet()

model.load_state_dict(torch.load('ckpt.pth')) 

Pytorch内存管理

查看tensor内存状态:tensor.storage()
查看tensor间是否共享内存:id(tensor1.storage()) == id(tensor2.storage())
查看tensor元首素相对于storage地址的偏移量:tensor.storage_offset()
查看tenso

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值