从几何角度全新理解线性代数

本文从线性变化的角度出发,探讨矩阵、矩阵乘法、行列式、逆矩阵、列空间、零空间等核心概念。通过几何解释,帮助理解线性变换如何影响空间,特别强调了行列式的面积/体积缩放意义和特征值、特征向量在变换中的作用。同时,介绍了点积的几何意义以及叉积的非严格和严格定义,最后引入了基变换和抽象空间向量的概念。
摘要由CSDN通过智能技术生成

油管上看到的非常好的一个线性代数教程(还有其他系列)
油管链接
B站也有的贴心不用上外网链接

1. 矩阵与线性变化

从线性变化的角度理解矩阵的意义。

  1. 线性变化:可以看作对空间的挤压伸展。它保持网格线平行且等距分布,并且原点不变。
  2. 怎样用数值描述线性变化:使用基向量。
    线性变换由它对空间的基向量的作用完全决定,因为其他任意向量都能表示为基向量的线性组合。在二维空间中,基向量就是i和j。
    在这里插入图片描述
    矩阵实际是对向量做线性变化,矩阵的列看作变化后的基,把矩阵乘法看作它们的线性组合。
    如下图所示,如果要知道空间旋转90度的任意[x,y]的坐标表示,与旋转后的基向量表示的矩阵相乘即可。
    在这里插入图片描述

线性变化是操控空间的一种手段,这种变化只要使用变化后基向量的坐标就可以表示。以这些坐标为列所构成的矩阵提供了一种描述线性变化的语言,而矩阵向量乘法就是计算线性变换作用于给定向量的一种途径。
在这里插入图片描述
这里要强调的是,每当看见一个矩阵,都可以把它理解为对空间的一种特定变化。
在这里插入图片描述

2. 矩阵乘法与线性变换复合

在这里插入图片描述
复合矩阵和先进行旋转矩阵,再进行剪切矩阵所得到的效果是一样的。
在这里插入图片描述
两个矩阵相乘的几何意义:两个线性变换相继作用。注意是从右到左作用,就好像f(g(x))是先进行g函数,再进行f函数。(线性变换本身就可以看作函数作用)

因此,矩阵相乘的一些性质就可以通过矩阵对空间的线性变化来很好的理解:
MN != NM (不满足交换律)
A(BC)=(AB)C (满足结合律,因为本来就是从右往左进行变换)

3. 行列式

在二维平面中,一个线性变换的行列式是3,表示它将一个区域的面积增加为3倍。
在这里插入图片描述
行列式为负数,可以理解为是将整个空间进行了翻转,以二维平面为例,好像将一张白纸从正面翻到了背面,行列式的绝对值依然表示区域面积的缩放比例。
在这里插入图片描述
负的面积缩放比例用来描述定向改变。
在三维空间中,行列式表示体积。
二维行列式计算:
在这里插入图片描述
三维计算:

在这里插入图片描述

4.逆矩阵,列空间与零空间

逆矩阵:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值