(吴恩达课后编程作业)Course 1- 第三周作业

本文介绍了如何构建一个具有单隐藏层的神经网络,包括定义结构、初始化参数、前向传播、损失计算和反向传播。通过吴恩达的机器学习课程,详细解释了每一步的操作,并展示了逻辑回归在非线性数据集上的不足。最后,讨论了隐藏层数量对模型性能的影响。
摘要由CSDN通过智能技术生成


写博客主要还是记录自己的学习过程,主要是参考 【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业大佬的博客,如果有错误的地方,希望有大佬指正

本周重点

本周作业主是建立一个神经网络,它有一个隐藏层。学到的知识有:

  • 构建具有单隐藏层的2类分类神经网络。
  • 使用具有非线性激活功能激活函数,例如tanh。
  • 计算交叉熵损失(损失函数)。
  • 实现向前和向后传播。

下载

链接:qifu
下载后解压,创建新项目
在这里插入图片描述

添加头文件

新建main.py文件

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。

np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。

加载查看数据集

1. 加载

X, Y = load_planar_dataset() #调用planar_utils的load_planar_dataset()函数

plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图

# 上一语句如出现问题,请使用下面的语句:
#plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) #绘制散点图
plt.show()

(1)查看一下load_planar_dataset()的函数
在这里插入图片描述
(2)scatter函数的参数
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图
在这里插入图片描述

运行结果
在这里插入图片描述


2.查看

shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # 训练集里面的数量

print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")

运行结果
在这里插入图片描述
X是一个表示这些数据点位置的矩阵;
Y是一个表示这些数据点颜色的矩阵;


查看简单的Logistic回归的分类效果

在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用sklearn的内置函数来做.

训练数据集上的逻辑回归分类器

clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T,Y.T) #训练模型

clf = sklearn.linear_model.LogisticRegressionCV() #逻辑回归.线性模型.Logistic回归

运行结果(不同的机器提示大同小异):

…\anaconda3\lib\site-packages\sklearn\utils\validation.py:73:
DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(**kwargs)

翻译:DataConversionWarning:当期望1d数组时,传递了列向量y。 请将y的形状更改为(n_samples,),例如使用ravel()。
返回f(** kwargs)

把逻辑回归分类器的分类绘制出来:


plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
plt.title("Logistic Regression") #图标题
LR_predictions  = clf.predict(X.T) #预测结果,也是一个0,1的矩阵
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) +
		np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
       "% " + "(正确标记的数据点所占的百分比)") # 自己用一个小的矩阵计算一下
plt.show()

运行显示
在这里插入图片描述
准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳
在这里插入图片描述
(1)clf = sklearn.linear_model.LogisticRegressionCV()的各种功能
在这里插入图片描述
上一周我们为了了解原理,学习怎么构建Logistic回归,但其实已经有现成的接口,如上图,直接调用使用即可;

(2)plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
看看这个函数

 def plot_decision_boundary(model, X, y):
    # 设置最小值和最大值并给其填充
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # 生成点之间的距离为h的点网格
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # 预测整个网格的功能值
    #np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat()。
    #np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge()。
    #ravel将多维数组转换为一维数组
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # 绘制轮廓和训练示例
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)#背景颜色
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)

搭建神经网络

在这里插入图片描述
在这里插入图片描述

构建神经网络的一般方法是:
1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)
2. 初始化模型的参数
3. 循环:
3.1 实施前向传播
3.2 计算损失
3.3实现向后传播
3.4实现向后传播

1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)

def layer_sizes(X, Y):
    #print("X.shape",X.shape)
    n_x = X.shape[0]  # 输入层
    n_h = 4  # ,隐藏层,硬编码为4
    #print("Y.shape", Y.shape)
    n_y = Y.shape[0]  # 输出层

    return (n_x, n_h, n_y)
"""
参数:
 X - 输入数据集,维度为(输入的数量,训练/测试的数量)
 Y - 标签,维度为(输出的数量,训练/测试数量)
返回:
 n_x - 输入层的数量
 n_h - 隐藏层的数量
 n_y - 输出层的数量
"""

这个函数就是得到:n_x输入层的数量、n_h 隐藏层的数量、n_y 输出层的数量

测试:

#测试layer_sizes
print("=========================测试layer_sizes=========================")
X_asses , Y_asses = layer_sizes_test_case() #调用了testCases.py中的layer_sizes_test_case()
(n_x,n_h,n_y) =  layer_sizes(X_asses,Y_asses)
print("输入层的节点数量为: n_x = " + str(n_x))
print("隐藏层的节点数量为: n_h = " + str(n_h))
print("输出层的节点数量为: n_y = " + str(n_y))
def layer_sizes_test_case():
    np.random.seed(1)#seed() 方法改变随机数生成器的种子,
    X_assess = np.random.randn(5, 3)#随机生成,是从标准正态分布中返回一个或多个样本值。
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess

这个函数生成两个随机的矩阵,分别代表数据集X和数据集标签Y

输出结果:
在这里插入图片描述

2. 初始化模型的参数

def initialize_parameters( n_x , n_h ,n_y):
    np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
    
    #使用断言确保我的数据格式是正确的
    assert(W1.shape == ( n_h , n_x ))
    assert(b1.shape == ( n_h , 1 ))
    assert(W2.shape == ( n_y , n_h ))
    assert(b2.shape == ( n_y , 1 ))
    
    parameters = {"W1" : W1,
	              "b1" : b1,
	              "W2" : W2,
	              "b2" : b2 }
    return parameters
"""
参数:
    n_x - 输入层节点的数量
    n_h - 隐藏层节点的数量
    n_y - 输出层节点的数量

返回:
    parameters - 包含参数的字典:
        W1 - 权重矩阵,维度为(n_h,n_x)
        b1 - 偏向量,维度为(n_h,1)
        W2 - 权重矩阵,维度为(n_y,n_h)
        b2 - 偏向量,维度为(n_y,1)
"""

Z1 = w1x1+b1是输入层到隐藏层
w1(n_h,n_x)、x1(n_x , …) 、b1( n_h , 1 )
a = tanh(Z1)
Z2 = w2
a+b2
w2(n_y,n_h)、a(n_h,…)、b2(n_y,1)

这个函数就是初始化得到W1,W2,b1,b2

测试:

=========================测试initialize_parameters=========================
W1 = [[-0.00416758 -0.00056267]
 [-0.02136196  0.01640271]
 [-0.01793436 -0.00841747]
 [ 0.00502881 -0.01245288]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
b2 = [[ 0.]]

结果
在这里插入图片描述

3. 循环:

  • 3.1 实施前向传播

我们现在要实现前向传播函数forward_propagation()。
我们可以使用sigmoid()函数,也可以使用np.tanh()函数。
步骤如下:
步骤

def forward_propagation( X , parameters ):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出
    
    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
     """
     #使用字典类型的parameters(它是initialize_parameters() 的输出)检索每个参数
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    #前向传播计算Z1 Z2 A1 A2
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1,X.shape[1]))
    #反向传播所需的值存储在“cache”中,cache将作为反向传播函数的输入
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    return (A2, cache)

测试

#测试forward_propagation
print("=========================测试forward_propagation=========================") 
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))

结果
在这里插入图片描述

  • 3.2 计算损失

在这里插入图片描述

def compute_cost(A2,Y,parameters):
    """
    计算方程(6)中给出的交叉熵成本,
    
    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量
    
    返回:
         成本 - 交叉熵成本给出方程(13)
    """
    
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    
    #计算成本
    logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))
    
    assert(isinstance(cost,float))
    
    return cost

测试

#测试compute_cost
print("=========================测试compute_cost=========================") 
A2 , Y_assess , parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2,Y_assess,parameters)))

结果
在这里插入图片描述

  • 3.3实现向后传播

在这里插入图片描述
代码:

def backward_propagation(parameters, cache, X, Y):
    """
    使用上述说明搭建反向传播函数。

    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)

    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]

    W1 = parameters["W1"]
    W2 = parameters["W2"]

    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2 = A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}

    return grads

测试

#测试backward_propagation
print("=========================测试backward_propagation=========================")
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))

结果:在这里插入图片描述

  • 3.4更新参数(梯度下降)

我们需要使用(dW1, db1, dW2, db2)来更新(W1, b1, W2, b2)。
α:学习速率
θ :参数
我们需要选择一个良好的学习速率,我们可以看一下下面这两个图(由AdamHarley提供):

在这里插入图片描述在这里插入图片描述
上面两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。

def update_parameters(parameters,grads,learning_rate=1.2):
    """
    使用上面给出的梯度下降更新规则更新参数
    
    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率
    
    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    W1,W2 = parameters["W1"],parameters["W2"]
    b1,b2 = parameters["b1"],parameters["b2"]
    
    dW1,dW2 = grads["dW1"],grads["dW2"]
    db1,db2 = grads["db1"],grads["db2"]
    
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters


测试

#测试update_parameters
print("=========================测试update_parameters=========================")
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

运行
在这里插入图片描述

整合

我们现在把上面的东西整合到nn_model()中,神经网络模型必须以正确的顺序使用先前的功能。

def nn_model(X,Y,n_h,num_iterations,print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值
    
    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
     """
     
    np.random.seed(3) #指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    parameters = initialize_parameters(n_x,n_h,n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    for i in range(num_iterations):
        A2 , cache = forward_propagation(X,parameters)
        cost = compute_cost(A2,Y,parameters)
        grads = backward_propagation(parameters,cache,X,Y)
        parameters = update_parameters(parameters,grads,learning_rate = 0.5)
        
        if print_cost:
            if i%1000 == 0:
                print("第 ",i," 次循环,成本为:"+str(cost))
    return parameters

测试

#测试nn_model
print("=========================测试nn_model=========================")
X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

运行结果
在这里插入图片描述


预测

构建predict()来使用模型进行预测, 使用向前传播来预测结果

def predict(parameters,X):
    """
    使用学习的参数,为X中的每个示例预测一个类
    
    参数:
		parameters - 包含参数的字典类型的变量。
	    X - 输入数据(n_x,m)
    
    返回
		predictions - 我们模型预测的向量(红色:0 /蓝色:1)
     
     """
    A2 , cache = forward_propagation(X,parameters)
    predictions = np.round(A2)
    
    return predictions

测试

print("=========================测试predict=========================")

parameters, X_assess = predict_test_case()

predictions = predict(parameters, X_assess)
print("预测的平均值 = " + str(np.mean(predictions)))

结果
在这里插入图片描述

正式运行

parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)

#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')

运行结果
在这里插入图片描述
在这里插入图片描述


更改隐藏层数量

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i + 1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations=5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
    print ("隐藏层的节点数量: {}  ,准确率: {} %".format(n_h, accuracy))

在这里插入图片描述
较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。
最好的隐藏层大小似乎在n_h = 5附近。实际上,这里的值似乎很适合数据,而且不会引起过度拟合。
我们还将在后面学习有关正则化的知识,它允许我们使用非常大的模型(如n_h = 50),而不会出现太多过度拟合。


又是学得很艰难的一天
在这里插入图片描述
基本跟上次的作业的套路是一样的,不过是加多了输入输出隐藏层

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值