函数微分和导数的定义

文章介绍了可导与可微的概念,强调了它们在处理非线性函数时的作用,尤其是如何用线性函数近似非线性函数,简化计算。可微意味着局部可以用直线近似,误差随着变化量趋近于零。文章适用于理解微分在解决实际问题中的应用。
摘要由CSDN通过智能技术生成

1.我们先来看可导的定义:

相信这个大家都看的懂。

 2.接下来我们看可微的定义:

 你们有没用想过为什么会有可微,他是用来干什么的,我们接下来看下面这张图,特别是结合图2-11来说,

 我们可以看到书上说可微是在局部范围内用线性函数近似代替非线性函数,数学上称为非线性函数的局部线性化。我用自己的语言(人话)解释一下:在平时的搞工程和科学的时候,会遇到像图2-11这样的曲线函数,有可能函数更弯,还打拐,而xx_{0}x_{0}+\Delta x,变化量为\Delta x时,求对应的\Delta y,此时\Delta y=f(x_{0}+\Delta x)-f(x_{0}),这个式子是个两个曲线函数相减,实践运用中很麻烦,有人想能不能把曲线去掉,变简单点,于是微分就承担这个工作,从图2-11可以看出当\Delta x变的很小的时候,\Delta y=NQdy=PQ=A\Delta x的差距就会越来越小,最后忽略不计,用\Delta y=A\Delta x+o(\Delta x)代替上面那两个曲线函数相减,A通常指的就是斜率\alpha,也就是M点的导数,这时候\Delta y就从自变量为\Delta x的曲线函数就变成了自变量为\Delta x的线性函数。下面这两张图我来解释o(\Delta x)这个尾巴怎么回事。 

由图2-11,o(\Delta x)=QN-PQ=PN就是\Delta y由曲线函数变为线性函数的代价,也就是误差。可以看到上图证明当\Delta x\rightarrow 0时,\Delta ydy是同阶无穷小,那他们的误差只能是同阶或更高阶无穷小,那么他们此时的误差o(\Delta x)更是无限趋近于0,甚至可以不写。

       本文的谬误欢迎各位读者指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值