奇异值分解

奇异值分解是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。
定义:设A为m*n阶矩阵,AHA的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。

如果把AHA的特征值记为λi(A),则σi(A)=λi(AHA)^(1/2)。


定理:
(奇异值分解)设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得:

                 A = U*S*V’

其中S=diag(σi2,……,σr),σi>0 (i=1,…,r),r=rank(A)。


推论:
设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得

A = U*S*V’

其中S=diag(σi2,……,σr),σi>0 (i=1,…,r),r=rank(A)。

说明:

1、 奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系。

2、 奇异值分解提供了一些关于A的信息,例如非零奇异值的数目(S的阶数)和A的秩相同,一旦秩r确定,那么U的前r列构成了A的列向量空间的正交基。

关于奇异值分解中当考虑的对象是实矩阵时: S对角元的平方恰为A'A特征值的说明. (对复矩阵类似可得)
从上面我们知道矩阵的奇异值分解为: A=USV, 其中U,V是正交阵(所谓B为正交阵是指B'=B-1, 即B'B=I), S为对角阵.
A'A=V'S'U'USV=V'S'SV=V-1S2V
上式中, 一方面因为S是对角阵, S'S=S2, 且S2对角元就是S的对角元的平方. 另一方面注意到A'A是相似与S2的, 因此与S2有相同特征值.

注:下面的符号和上面的有差异,注意区分

SVD步骤:

1、求AHA或AAH

2、求AHA或AAH的特征值及特征向量x1,x2,...xr, r个特征值组成

3、 U=(x1,x2,...xr)地

4、V1=AU1Δr-1,取V2与其正交,则V=(V1V2)

from:http://blog.csdn.net/xiaokaiy/archive/2007/06/07/1642008.aspx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值