Transformer & 立体视觉 & Depth Estimation

本文提出了一种名为Stereo Transformer (STTR)的新型深度学习网络,用于立体深度估计。STTR利用Transformer架构,避免了传统方法中固定视差范围的限制,同时处理遮挡问题并施加匹配唯一性约束。通过在合成和真实图像数据集上的实验,STTR展示了优秀的性能,并能在不同领域中推广。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Intro

立体深度估计具有重要的意义,因为它能够重建三维信息。为此,在左右相机图像之间匹配相应的像素;对应像素位置的差异,即视差,可以用来推断深度并重建3D场景。最近基于深度学习的立体深度估计方法已经显示出有希望的结果,但仍然存在一些挑战。

其中一个挑战涉及使用有限的视差范围。理论上,视差值的范围可以从0到图像宽度,这取决于相机的分辨率/基线以及它们与物理对象的接近程度。然而,许多性能最好的方法都被限制在手动预先指定的视差范围内(通常最大值为192像素)[21]。这些方法依赖于“成本量”,其中计算多个候选匹配的匹配成本,并计算最终预测的差异值作为总和。这种自我施加的视差范围是必要的,以使这些方法的内存可行的实现,但不是灵活的物理场景和/或相机设置的属性。在自动驾驶和内窥镜干预等应用中,无论相机设置如何(视差值可能大于192),识别近距离物体以避免碰撞是很重要的,这表明需要放宽固定视差范围假设。

几何属性和约束,如遮挡和匹配唯一性,导致了非学习方法的成功,如[18],也经常在基于学习的方法中缺失。对于立体深度估计,遮挡区域没有有效的视差。先前的算法通常通过分段平滑假设来推断被遮挡区域的差异,这可能并不总是有效的。提供置信度估计和视差值将有利于下游分析,例如配准或场景理解算法,以便对遮挡和低置信度估计进行加权或拒绝。然而,大多数先前的方法不提供这样的信息。此外,一幅图像中的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HelloWorld__来都来了

来都来了 福寿双全

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值