论文题目:Novel Prediction Strategies for Dynamic Multiobjective Optimization
一种新型动态多目标优化的预测策略(Qingyang Zhang, Shengxiang Yang , Senior Member, IEEE, Shouyong Jiang, Ronggui Wang, and Xiaoli Li)IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 2, APRIL 2020
刚开始学习多目标优化算法,不作商业用途,如果有不正确的地方请指正!
个人总结:
检测到变化就生成3个亚群保证多样性的同时加快收敛,具体总结看代码复现,看看能不能复现出来.
摘要
- 提出了一种基于预测的动态多目标优化算法(PBDMO)
- 检测到变化时就根据不同策略生成3个亚群
- 第一个亚群是通过使用具有不同步长的简单线性预测模型移动非支配个体来创建的。第二个亚群由一种新的抽样策略产生的一些个体组成,以改善种群收敛和分布。第三个子群体包括使用基于变量概率分布的收缩策略生成的一些个体。(确实美化的好)
引言
与单优化问题(SOP)不同,多目标优化问题(MOPs)通常涉及至少两个相互冲突的优化目标,需要同时优化。由于多对象性,求解 MOP 的目标不是找到单个最优解,而是找到一组权衡解。
目前现状与问题
为了求解DMOP,现有的大多数动态多目标进化算法(DMOEA)直接采用了静态多目标进化算法(MOEA)的技术,假设DMOP可以随时间推移划分为一系列MOP。
但是,DMOEA没有足够的时间在变化发生之前搜索最佳解决方案,所以DMOEA需要有快速收敛的能力,同时还需要保持好种群的多样性,并需要变化检测技术来防止算法在优化过程中被误导
本文提出的想法PBDMO
- 提出了一种新的预测策略,在发生变化后,将先前环境中的非支配解分散迁移到新的POF的估计位置周围
- 提出了一种分类策略,将决策变量分为主要组和非主要组
- 利用决策变量的概率分布来生产另一组良好的解
- 再结合这三个策略生成的解结合进行非支配排序形成一个新的环境群体.
- PBDMO is more robust than the other algorithms as its performance does not fluctuate widely across a variety of problems with diverse dynamic characteristics
背景及相关工作
A.DMOEA基础框架
主要是变化检测和动态的多目标算法
B.动态检测
变化检测是动态优化的重要组成部分,因为它能识别变化是否已经出现,并决定是否应做出响应 。检测变化的方法包括重新评估解决方案或检查群体统计信息。
- 注意:重新评估解决方案容易实施,但是会对噪声敏感
- 检查群体统计信息对噪声具有鲁棒性,但是需要一些额外的参数
C.动态多目标优化算法
4大分类和各自分类下优秀的算法
D.多目标优化算法
PBDMO算法
算法整体框架如下:
A.预测非支配解集
(我大概看一眼觉得是中心点迁移,不一样的是作者加了距离策略 移动0.5 1 1.5 一起保存,看看复现的时候好不好用)
主要方案:计算了最近两个连续种群中心点的移动方向,并利用它来预测当前种群中的非优势成员在新环境中的位置,主要运用三个公式:
- 中心点:
- 移动距离:
- 下一代的预测:
- 其中 rs 指沿移动方向 Dirt 的移动步长。在这里,可以使用三个不同的 rs 值(即 0.5、1.0 和 1.5),分别代表的小、中、大移动。
-
当然作者这里先假设了两个变化存在相关性, rs的取值应该也可以对不同问题进行微调.
B.新的抽样策略
将搜索空间中的一些采样点引入新种群,有可能增加种群的多样性,但是采样点对收敛的贡献往往是不确定的。
在这里作者把决策向量分为了两个子向量:1主要变量;2非主要变量;并假设非主要变量取决于主要变量
主要变量的确定方法:即最主要变量是非主变量集中标准差最大的变量(如果出现并列,则选择第一个遇到的变量)
采样点的获取:对于主要变量进行N1等分,对于非主要变量通过得到N2个采样点,其中UkLk是变量的上下界. 所以一共得到N1xN2个采样点
重点:不同的采样点会影响算法,这里作者采取N2为变量维数,N1位a使得,N1xN1 = N1xD < N/2
评估:对采样点进行非支配排序得到非支配解
这是2维空间下的事例,红色的为主要变量的采样点,算法伪代码如下:
C.收缩策略
根据变量的概率分布,提出了一种缩小策略来完善可能的最优变量范围,这实质上是对决策空间的缩小.应用于前面的非主要变量
具体实施:
- 首先,利用概率估计策略,在相应的非主集上计算 t 时刻 xi 的最大可能值(记为 Dvt)。
- 利用最后两个连续的 Dvt-1 和 Dvt,可以预测 t+1 时刻新环境 Dvt+1 下 xi 的最大可能值
- 并把t+1时刻的上界预计为
- 下界为Dvt的下界
新环境下的xi的估计值就为紫色虚线
以上就是算法的全部,接下来开始复现.