将给定的一系列数字插入初始为空的AVL树,请你输出最后生成的AVL树的根结点的值。
输入格式:
输入的第一行给出一个正整数N(≤20),随后一行给出N个不同的整数,其间以空格分隔。
输出格式:
在一行中输出顺序插入上述整数到一棵初始为空的AVL树后,该树的根结点的值。
输入样例1:
5
88 70 61 96 120
输出样例1:
70
输入样例2:
7
88 70 61 96 120 90 65
输出样例2:
88
思路:
这题就是要实现AVL树,直接模拟就行,虽然很麻烦,题主也尝试过STL容器去做,但是STL里面的如set等容器都是基于红黑树实现的,所以没法直接完成。
AVL 树
AVL 树是一种自平衡的二叉搜索树,通过在插入节点时进行旋转操作来保持树的平衡性,从而确保树的高度保持在 O(log N) 的水平,提高了查找、插入和删除操作的效率。
在代码中,首先定义了 AVL 树的节点结构 Node
,每个节点包含一个整数数据 Data
和指向左右子树的指针 Left
和 Right
。然后实现了计算树高度的函数 getHeight
,用于计算以当前节点为根的子树的高度。
接着实现了四种旋转操作:LL(左旋转)、RR(右旋转)、LR(左右旋转)和 RL(右左旋转),用于在插入节点后调整树的平衡性。
最后,插入节点的函数 Insert
,在插入节点的过程中根据需要进行旋转操作,以保持 AVL 树的平衡性。在主函数中,通过循环输入待插入的节点数据,并调用 Insert
函数完成节点的插入。最后输出根节点的数据。
那LL(左旋转)、RR(右旋转)、LR(左右旋转)和 RL(右左旋转)又是什么呢?
左旋和右旋是在 AVL 树中用于保持树的平衡性的重要操作。它们的目的是通过旋转子树的节点来调整树的结构,使得树的左右子树的高度差不超过 1,从而确保整棵树的高度保持在 O(log N) 的水平,来提高树的查找、插入和删除操作的效率。
左旋转(LL旋转)
左旋转是针对某个节点的右子树过高的情况进行的操作。具体步骤如下:
- 将当前节点的右子树的左子树(如果存在)作为当前节点的右子树。
- 将当前节点的右子树替换为其原左子树。
- 更新节点的父节点的指针,使得原右子树的根节点成为当前节点的父节点的左子树。
这样一来,原先右子树过高的节点被左旋转后,高度被调整到合理范围内,使得树保持平衡。
右旋转(RR旋转)
右旋转是针对某个节点的左子树过高的情况进行的操作。具体步骤如下:
- 将当前节点的左子树的右子树(如果存在)作为当前节点的左子树。
- 将当前节点的左子树替换为其原右子树。
- 更新节点的父节点的指针,使得原左子树的根节点成为当前节点的父节点的右子树。
通过右旋转,原先左子树过高的节点被调整到合理范围内,保持了树的平衡性。
左右旋转(LR旋转)和右左旋转(RL旋转)
左右旋转和右左旋转是一种组合操作,它们用于处理某个节点的子树中出现了“左-右”和“右-左”两种情况的不平衡情况。具体步骤和逻辑需要根据具体情况来进行,主要是通过先进行一次左旋转或右旋转,然后再进行一次右旋转或左旋转来实现树的平衡。
总的来说,左旋和右旋是 AVL 树中维持平衡的基本操作,它们通过调整树的结构来确保树的高度保持在合理范围内,从而提高了树的性能。
#include <iostream>
#include <cstdlib>
using namespace std;
// 定义AVL树节点结构
struct Node {
int Data; // 节点存储的数据
Node* Left; // 指向左子树的指针
Node* Right; // 指向右子树的指针
};
// 计算树的高度
int getHeight(Node* T) {
if (!T) return 0; // 如果节点为空,则返回高度0
int leftHeight = getHeight(T->Left) + 1; // 计算左子树的高度并加上当前节点
int rightHeight = getHeight(T->Right) + 1; // 计算右子树的高度并加上当前节点
return max(leftHeight, rightHeight); // 返回左右子树中较大的高度
}
// 左旋转(LL旋转)
Node* LL(Node* T) {
Node* T1 = T->Right; // T的右子树
T->Right = T1->Left; // 将T的右子树指向T1的左子树
T1->Left = T; // 将T1的左子树指向T
return T1; // 返回旋转后的根节点
}
// 右旋转(RR旋转)
Node* RR(Node* T) {
Node* T1 = T->Left; // T的左子树
T->Left = T1->Right; // 将T的左子树指向T1的右子树
T1->Right = T; // 将T1的右子树指向T
return T1; // 返回旋转后的根节点
}
// 左右旋转(LR旋转)
Node* LR(Node* T) {
Node* T1 = T->Left, *T2 = T->Left->Right; // T1为T的左子树,T2为T1的右子树
T1->Right = T2->Left; // 将T1的右子树指向T2的左子树
T->Left = T2->Right; // 将T的左子树指向T2的右子树
T2->Right = T; // 将T2的右子树指向T
T2->Left = T1; // 将T2的左子树指向T1
return T2; // 返回旋转后的根节点
}
// 右左旋转(RL旋转)
Node* RL(Node* T) {
Node* T1 = T->Right, *T2 = T->Right->Left; // T1为T的右子树,T2为T1的左子树
T1->Left = T2->Right; // 将T1的左子树指向T2的右子树
T->Right = T2->Left; // 将T的右子树指向T2的左子树
T2->Left = T; // 将T2的左子树指向T
T2->Right = T1; // 将T2的右子树指向T1
return T2; // 返回旋转后的根节点
}
// 插入节点并保持AVL平衡
Node* Insert(Node* T, int x) {
if (!T) {
// 创建新节点
Node* T = new Node;
T->Data = x;
T->Left = T->Right = NULL;
return T;
}
else if (x > T->Data) {
// 插入到右子树
T->Right = Insert(T->Right, x);
if ((getHeight(T->Right) - getHeight(T->Left)) >= 2) {
// 右子树高度大于左子树,需要进行旋转操作
if (x > T->Right->Data)
T = LL(T);
else T = RL(T);
}
}
else if (x < T->Data) {
// 插入到左子树
T->Left = Insert(T->Left, x);
if ((getHeight(T->Left) - getHeight(T->Right)) == 2) {
// 左子树高度大于右子树,需要进行旋转操作
if (x < T->Left->Data) T = RR(T);
else T = LR(T);
}
}
return T;
}
int main() {
int n, x;
Node* T = NULL;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> x;
T = Insert(T, x); // 插入节点
}
cout << T->Data; // 输出根节点的数据
return 0;
}