Ubuntu16.04下安装Cuda、Cudnn、Pytorch gpu版本、torchvision,一篇到位,亲测可行,含泪总结!!!
目录:
在看了大半年论文后准备开始实操,一番比较后准备基于mmdetection来做研究,使用前要先把环境配好,整个过程可能配了有3、4天,博主比较菜,见笑,期间看了很多博客,踩了无数的坑。看不少坑大家都在踩,于是一股神秘的力量驱使着我赶紧总结一下自己的配置环境的经验。
亲测可行,已成功在服务器的docker内以及实验室电脑的ubuntu上都配好了环境,美滋滋,大家可以参考一下。
一、准备工作
看了很多博客,在安装前他们都没有提到一个准备工作,非常重要!!!
你所要安装的cuda版本需要和你的显卡驱动相对应,如果显卡驱动和CUDA版本对不上,即使Cuda、Cudnn、Pytorch 、torchvision之间完全对应,最后torch.cuda.is_available()还是会显示false,让你崩溃,参考下图:
上图来源于:[CUDA] NVIDIA显卡驱动与CUDA Toolkit版本对照表.
查看显卡型号及驱动版本:
// 查看显卡型号
lspci | grep -i nvidia
// 查看NVIDIA驱动版本
sudo dpkg --list | grep nvidia-*
其次,你安装的Cudnn需要和你所下载的CUDA相对应,一般在官网下载都会显示不同版本Cuda对应的Cudnn,并且,如果你是从清华源下载Pytorch,建议Cudnn的版本还要与你所使用的pytorch版本相对应,可以先进去看一眼:点击此链接跳转清华源,参考下图,具体的Pytorch gpu版本的安装过程后续会详细说明。