PPDet: Reducing Label Noise in Anchor-Free Object Detection论文阅读翻译
目录:
论文下载地址: 点击此链接跳转.
这是博主自己在github整理的目标检测方向论文的合集,应该算比较全,目前2020ECCV持续更新中,即将更新:2020IJCAI合集,欢迎下载…
一、Abstract
当前的anchor-free目标检测器是将所有落在GT框预定义的中心区域内的空间特征标记为正。但是这些带正标签的特征可能包含背景或遮挡物,甚至根本就不是有判别性的特征,这些特征在训练过程中会产生标签噪声。本文作者提出了一种新的标签策略来降低anchor-free的标签噪声,将来自各个特征的预测汇总为一个预测,使模型能够减少训练过程中非判别性特征的贡献。作者提出了一种新的单阶的anchor-free目标检测器PPDet,以在其训练中使用这种标记策略,并在推理中使用类似的预测合并法,在COCO上能够取得anchor-free检测器中最优的性能,其中APs能达到31.4。
二、Introduction
早期基于深度学习的目标检测算法都是两阶段的proposals驱动的方法,在第一阶段会生成一组稀疏的目标候选框,然后在第二阶段经CNN进行分类。后来又出现了单阶段的目标检测器,候选框被预定义的anchor替代。一方面anc