论文翻译:arxiv-2023 Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs

Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs
https://arxiv.org/pdf/2308.13387

不回答:评估大型语言模型中安全保障的数据集

摘要

随着大型语言模型(LLMs)的快速发展,出现了新的、难以预测的有害能力。这要求开发者能够通过评估“危险能力”来识别风险,以便负责任地部署LLMs。在这项工作中,我们收集了第一个开源数据集,用于评估LLMs中的安全保障,并以低成本部署更安全的开源LLMs。我们的数据集经过策划和筛选,只包含负责任的语言模型不应遵循的指令。我们注释并评估了六个流行的LLMs对这些指令的响应。基于我们的注释,我们继续训练了几个类似BERT的分类器,并发现这些小型分类器在自动安全评估上能够取得与GPT-4相当的成果。警告:本文包含可能具有攻击性、有害或有偏见的示例数据。

1 引言

大型语言模型(LLMs)的快速发展导致了一些新兴的、高实用性的能力,包括那些未经训练的能力。不利的一面是,它们也被发现表现出难以预测的有害能力。现有的模型评估旨在衡量性别和种族偏见、真实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值