6.5 Simultaneous Triangulation; Simultaneous Diagonalization

这一节解决的核心问题是,在一族可交换operator条件下,如果这个族都是可三角化(对角化)的,那么能有一组基使得该族内所有operator在这一基下的矩阵都是三角化(对角化)的。Exercises1.Find an invertible real matrix PPP such that P−1APP^{-1}APP−1AP and P−1BPP^{-1}BPP−1BP are both d...
摘要由CSDN通过智能技术生成

这一节解决的核心问题是,在一族可交换operator条件下,如果这个族都是可三角化(对角化)的,那么能有一组基使得该族内所有operator在这一基下的矩阵都是三角化(对角化)的。

Exercises

1.Find an invertible real matrix P P P such that P − 1 A P P^{-1}AP P1AP and P − 1 B P P^{-1}BP P1BP are both diagonal, where A A A and B B B are the real matrices
( a ) A = [ 1 2 0 2 ] , B = [ 3 − 8 0 − 1 ] A=\begin{bmatrix}1&2\\0&2\end{bmatrix},\qquad B=\begin{bmatrix}3&-8\\0&-1\end{bmatrix} A=[1022],B=[3081]
( b ) A = [ 1 1 1 1 ] , B = [ 1 a a 1 ] A=\begin{bmatrix}1&1\\1&1\end{bmatrix}, \qquad B=\begin{bmatrix}1&a\\a&1\end{bmatrix} A=[1111],B=[1aa1]
Solution:
( a ) We can verify that A A A and B B B commute. Since 1 1 1 and 2 2 2 are distinct characteristic value of A A A, and α 1 = ( 1 , 0 ) \alpha_1=(1,0) α1=(1,0) and α 2 = ( 2 , 1 ) \alpha_2=(2,1) α2=(2,1) are basis of null  ( A − I ) \text{null }(A-I) null (AI) and null  ( A − 2 I ) \text{null }(A-2I) null (A2I), we have
B α 1 = [ 3 − 8 0 − 1 ] [ 1 0 ] = [ 3 0 ] , B α 2 = [ 3 − 8 0 − 1 ] [ 2 1 ] = [ − 2 − 1 ] B\alpha_1=\begin{bmatrix}3&-8\\0&-1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}3\\0\end{bmatrix},\quad B\alpha_2=\begin{bmatrix}3&-8\\0&-1\end{bmatrix}\begin{bmatrix}2\\1\end{bmatrix}=\begin{bmatrix}-2\\-1\end{bmatrix} Bα1=[3081][10]=[30],Bα2=[3081][21]=[21]
thus the real matrix P P P we need is P = [ 1 2 0 1 ] P=\begin{bmatrix}1&2\\0&1\end{bmatrix} P=[1021].
( b ) We can verify that A B = B A = [ 1 + a 1 + a 1 + a 1 + a ] AB=BA=\begin{bmatrix}1+a&1+a\\1+a&1+a\end{bmatrix} AB=BA=[1+a1+a1+a1+a], since 0 0 0 and 2 2 2 are distinct characteristic value of A A A, and α 1 = ( 1 , − 1 ) \alpha_1=(1,-1) α1=(1,1) and α 2 = ( 1 , 1 ) \alpha_2=(1,1) α2=(1,1) are basis of null  ( A ) \text{null }(A) null (A) and null  ( A − 2 I ) \text{null }(A-2I) null (A2I), we have
B α 1 = [ 1 a a 1 ] [ 1 − 1 ] = [ 1 − a a − 1 ] , B α 2 = [ 1 a a 1 ] [ 1 1 ] = [ 1 + a 1 + a ] B\alpha_1=\begin{bmatrix}1&a\\a&1\end{bmatrix}\begin{bmatrix}1\\-1\end{bmatrix}=\begin{bmatrix}1-a\\a-1\end{bmatrix},\quad B\alpha_2=\begin{bmatrix}1&a\\a&1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1+a\\1+a\end{bmatrix} Bα1=[1aa1][11]=[1aa1],Bα2=[1aa1][11]=[1+a1+a]
thus the real matrix P P P we need is P = [ 1 − 1 1 1 ] P=\begin{bmatrix}1&-1\\1&1\end{bmatrix} P=[1111].

2.Let F \mathfrak F F be a commuting family of 3 × 3 3\times 3 3×3 complex matrices. How many linearly independent matrices can F \mathfrak F F contain? What about the n × n n\times n n×n case?
Solution: All matrices in F \mathfrak F F can be triangular under the same basis, thus there are 6 6 6 linearly independent matrices that F \mathfrak F F can contain. In the n × n n\times n n×n case, there are n ! n! n! linearly independent matrices in F \mathfrak F F.

3.Let T T T be a linear operator on an n n n-dimensional space, and suppose that T T T has n n n distinct characteristic values. Prove that any linear operator which commutes with T T T is a polynomial in T T T.
Solution: Suppose T T T has n n n distinct values c 1 , … , c n c_1,\dots,c_n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值