5.4 Additional Properties of Determinants

这一节主要说了转置矩阵行列式的计算、特殊的分块矩阵行列式计算,通过classical adjoint计算行列式,以及通过行列式确定矩阵是否可逆及逆矩阵计算方法(Theorem 4), 最后提了一下Cramer’s rule。最后的最后,作者还苦口婆心的说不要注重行列式的计算,要注重其理论意义和证明,关注how it behaves而不是how to compute。(结果习题上来就是两道compute……)

Exercises

1.Use the classical adjoint formula to compute the inverse of each of the following 3 × 3 3\times 3 3×3 real matrices.
[ − 2 3 2 6 0 3 4 1 − 1 ] , [ cos ⁡ θ 0 − sin ⁡ θ 0 1 0 sin ⁡ θ 0 cos ⁡ θ ] \begin{bmatrix}-2&3&2\\6&0&3\\4&1&-1\end{bmatrix},\qquad \begin{bmatrix}\cos \theta&0&-\sin \theta\\0&1&0\\\sin \theta&0&\cos \theta\end{bmatrix} 264301231,cosθ0sinθ010sinθ0cosθ
Solution: Let the first matrix be A A A and the second be B B B.
We have det ⁡ A = 72 \det A=72 detA=72 and
adj  A = [ − 3 5 9 18 − 6 18 6 14 − 18 ]    ⟹    A − 1 = 1 72 [ − 3 5 9 18 − 6 18 6 14 − 18 ] \text{adj }A=\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix}\implies A^{-1}=\frac{1}{72}\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix} adj A=3186561491818A1=7213186561491818
We have det ⁡ B = 1 \det B=1 detB=1 and
adj  B = [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ]    ⟹    B − 1 = [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] \text{adj }B=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix}\implies B^{-1}=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix} adj B=cosθ0sinθ010sinθ0cosθB1=cosθ0sinθ010sinθ0cosθ

2.Use Cramer’s rule to solve each of the following systems of linear equations over the field of rational numbers.
( a ) x + y + z = 11 2 x − 6 y − z = 0 3 x + 4 y + 2 z = 0 \begin{aligned}x&+y+z=11\\2x&-6y-z=0\\3x&+4y+2z=0\end{aligned} x2x3x+y+z=116yz=0+4y+2z=0
( b ) 3 x − 2 y = 7 3 y − 2 z = 6 3 z − 2 x = − 1 \begin{aligned}3x&-2y=7\\3y&-2z=6\\3z&-2x=-1\end{aligned} 3x3y3z2y=72z=62x=1
Solution:
( a ) The coefficient matrix A A A of the system is
A = [ 1 1 1 2 − 6 − 1 3 4 2 ] , det ⁡ A = 11 A=\begin{bmatrix}1&1&1\\2&-6&-1\\3&4&2\end{bmatrix},\qquad \det A=11 A=123164112,detA=11
Also we have
B 1 = [ 11 1 1 0 − 6 − 1 0 4 2 ] , B 2 = [ 1 11 1 2 0 − 1 3 0 2 ] , B 3 = [ 1 1 11 2 − 6 0 3 4 0 ] B_1=\begin{bmatrix}11&1&1\\0&-6&-1\\0&4&2\end{bmatrix},B_2=\begin{bmatrix}1&11&1\\2&0&-1\\3&0&2\end{bmatrix},B_3=\begin{bmatrix}1&1&11\\2&-6&0\\3&4&0\end{bmatrix} B1=1100164112,B2=1231100112,B3=1231641100
A simple calculation shows det ⁡ B 1 = − 88 , det ⁡ B 2 = − 77 , det ⁡ B 3 = 11 × 26 \det B_1=-88,\det B_2=-77,\det B_3=11\times 26 detB1=88,detB2=77,detB3=11×26, thus the solution is ( x , y , z ) = ( − 8 , − 7 , 26 ) (x,y,z)=(-8,-7,26) (x,y,z)=(8,7,26).
( b ) The coefficient matrix A A A of the system is
A = [ 3 − 2 0 0 3 − 2 − 2 0 3 ] , det ⁡ A = 19 A=\begin{bmatrix}3&-2&0\\0&3&-2\\-2&0&3\end{bmatrix},\qquad \det A=19 A=302230023,detA=19
Also we have
B 1 = [ 7 − 2 0 6 3 − 2 − 1 0 3 ] , B 2 = [ 3 7 0 0 6 − 2 − 2 − 1 3 ] , B 3 = [ 3 − 2 7 0 3 6 − 2 0 − 1 ] B_1=\begin{bmatrix}7&-2&0\\6&3&-2\\-1&0&3\end{bmatrix},B_2=\begin{bmatrix}3&7&0\\0&6&-2\\-2&-1&3\end{bmatrix},B_3=\begin{bmatrix}3&-2&7\\0&3&6\\-2&0&-1\end{bmatrix} B1=761230023,B2=302761023,B3=302230761
A simple calculation shows det ⁡ B 1 = 95 , det ⁡ B 2 = 76 , det ⁡ B 3 = 57 \det B_1=95,\det B_2=76,\det B_3=57 detB1=

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值