8.2 Inner Product Spaces

本文深入探讨了内积空间的概念,包括Cauchy-Schwarz不等式、正交与正交化、Gram-Schmidt过程以及垂直投影。文章还介绍了在线性代数中至关重要的投影和最小化过程,并阐述了垂直补空间的概念。通过具体的例子和练习,进一步巩固了内积空间的理论知识。
摘要由CSDN通过智能技术生成

这一节讨论内积空间,内容丰富,但都是经典的内容,比如Caucy-Schwarz不等式,orthogonal和orthonormal,Gram-Schmidt正交化过程。后半部分是投影和最小化过程,这是线性代数的核心内容之一。这部分的重要概念是垂直投影(orthogonal projection),垂直补空间(orthogonal complement)。Theorem 5说明任何一个子空间和其垂直补空间直和成为总的空间,其推论说明如果子空间的投影变换是 E E E则垂直补空间的投影变换是 I − E I-E IE,以及Bessel不等式,任何向量在一组正交基子空间中的投影长度小于等于自身。这个不等式在有限维空间中是显然的情况,但是Bessel不等式并没有限制在有限维空间中。

Exercises

1.Consider R 4 R^4 R4 with the standard inner product. Let W W W be the subspace of R 4 R^4 R4 consisting of all vectors which are orthogonal to both α = ( 1 , 0 , − 1 , 1 ) \alpha=(1,0,-1,1) α=(1,0,1,1) and β = ( 2 , 3 , − 1 , 2 ) \beta=(2,3,-1,2) β=(2,3,1,2). Find a basis for W W W.
Solution: If x = ( x 1 , x 2 , x 3 , x 4 ) ∈ W x=(x_1,x_2,x_3,x_4)\in W x=(x1,x2,x3,x4)W, then it shall satisfy ( x ∣ α ) = 0 (x|\alpha)=0 (xα)=0 and ( x ∣ β ) = 0 (x|\beta)=0 (xβ)=0, thus from
[ 1 0 − 1 1 2 3 − 1 2 ] → [ 1 0 − 1 1 0 3 1 0 ] \begin{bmatrix}1&0&-1&1\\2&3&-1&2\end{bmatrix}\rightarrow\begin{bmatrix}1&0&-1&1\\0&3&1&0\end{bmatrix} [12031112][10031110]
we can find a basis for W W W to be ( 1 , 0 , 0 , − 1 ) , ( 0 , 1 , − 3 , − 3 ) (1,0,0,-1),(0,1,-3,-3) (1,0,0,1),(0,1,3,3).

2.Apply the Gram-Schimidt process to the vectors β 1 = ( 1 , 0 , 1 ) , β 2 = ( 1 , 0 , − 1 ) , β 3 = ( 0 , 3 , 4 ) \beta_1=(1,0,1),\beta_2=(1,0,-1),\beta_3=(0,3,4) β1=(1,0,1),β2=(1,0,1),β3=(0,3,4), to obtain an orthonormal basis for R 3 R^3 R3 with the standard inner product.
Solution: We let α 1 = β 1 \alpha_1=\beta_1 α1=β1, and then
α 2 = ( 1 , 0 , − 1 ) − 0 2 α 1 = ( 1 , 0 , − 1 ) α 3 = ( 0 , 3 , 4 ) − 4 2 ( 1 , 0 , 1 ) − − 4 2 ( 1 , 0 , − 1 ) = ( 0 , 3 , 0 ) \alpha_2=(1,0,-1)-\frac{0}{2}\alpha_1=(1,0,-1) \\ \alpha_3=(0,3,4)-\frac{4}{2}(1,0,1)-\frac{-4}{2}(1,0,-1)=(0,3,0) α2=(1,0,1)20α1=(1,0,1)α3=(0,3,4)24(1,0,1)24(1,0,1)=(0,3,0)
The orthonormal basis for R 3 R^3 R3 may be 1 2 ( 1 , 0 , 1 ) , 1 2 ( 1 , 0 , − 1 ) , ( 0 , 1 , 0 ) \frac{1}{\sqrt{2}}(1,0,1),\frac{1}{\sqrt{2}}(1,0,-1),(0,1,0) 2 1(1,0,1),2 1(1,0,1),(0,1,0).

3.Consider C 3 C^3 C3, with the standard inner product. Find an orthonormal basis for the subspace spanned by β 1 = ( 1 , 0 , i ) \beta_1=(1,0,i) β1=(1,0,i) and β 2 = ( 2 , 1 , 1 + i ) \beta_2=(2,1,1+i) β2=(2,1,1+i).
Solution: We have
β 2 − ( β 2 ∣ β 1 ) ∣ ∣ β 1 ∣ ∣ 2 = ( 2 , 1 , 1 + i ) − 2 − i ( 1 + i ) 2 ( 1 , 0 , i ) = ( 2 , 1 , 1 + i ) − 3 − i 2 ( 1 , 0 , i ) = ( 1 + i 2 , 1 , 1 − i 2 ) \begin{aligned}\beta_2-\dfrac{(\beta_2|\beta_1)}{||\beta_1||^2}&=(2,1,1+i)-\frac{2-i(1+i)}{2}(1,0,i)\\&=(2,1,1+i)-\frac{3-i}{2}(1,0,i)\\&=\left(\frac{1+i}{2},1,\frac{1-i}{2}\right)\end{aligned} β2β12(β2β1)=(2,1,1+i)22i(1+i)(1,0,i)=(2,1,1+i)23i(1,0,i)=(21+i,1,21i)
thus ( 1 , 0 , i ) , ( 1 + i 2 , 1 , 1 − i 2 ) (1,0,i),\left(\dfrac{1+i}{2},1,\dfrac{1-i}{2}\right) (1,0,i),(21+i,1,21i) are one orthogonal basis for the desired subspace. The corresponding orthonormal basis is
( 1 2 , 0 , i 2 ) , ( 1 + i 2 2 , 1 2 , 1 − i 2 2 ) \left(\frac{1}{\sqrt{2}},0,\frac{i}{\sqrt{2}}\right),\left(\dfrac{1+i}{2\sqrt{2}},\frac{1}{\sqrt{2}},\dfrac{1-i}{2\sqrt{2}}\right) (2 1,0,2 i),(22 1+i,2 1,22 1i)

4.Let V V V be an inner product space. The distance between two vectors α \alpha α and β \beta β in V V V is defined by d ( α , β ) = ∣ ∣ α − β ∣ ∣ d(\alpha,\beta)=||\alpha-\beta|| d(α,β)=αβ. Show that
( a ) d ( α , β ) ≥ 0 d(\alpha,\beta)\geq 0 d(α,β)0;
( b ) d ( α , β ) = 0 d(\alpha,\beta)=0 d(α,β)=0 if and only if α = β \alpha=\beta α=β;
( c ) d ( α , β ) = d ( β , α ) d(\alpha,\beta)=d(\beta,\alpha) d(α,β)=d(β,α);
( d ) d ( α , β ) ≤ d ( α , γ ) + d ( γ , β ) d(\alpha,\beta)\leq d(\alpha,\gamma)+d(\gamma,\beta) d(α,β)d(α,γ)+d(γ,β).
Solution:
( a ) Easy by definition ;
( b ) By Theorem 1(ii), ∣ ∣ α − β ∣ ∣ > 0 ||\alpha-\beta||>0 αβ>0 for α − β ≠ 0 \alpha-\beta\neq 0 αβ=0;
( c ) We have
∣ ∣ α − β ∣ ∣ 2 = ( α − β ∣ α − β ) = ( α ∣ α ) − ( α ∣ β ) − ( β ∣ α ) + ( β ∣ β ) = ( β − α ∣ β − α ) = ∣ ∣ β − α ∣ ∣ 2 \begin{aligned}||\alpha-\beta||^2&=(\alpha-\beta|\alpha-\beta)\\&=(\alpha|\alpha)-(\alpha|\beta)-(\beta|\alpha)+(\beta|\beta)\\&=(\beta-\alpha|\beta-\alpha)=||\beta-\alpha||^2\end{aligned} αβ2=(αβαβ)=(αα)(αβ)(βα)+(ββ)=(βαβα)=βα2
thus d ( α , β ) = d ( β , α ) d(\alpha,\beta)=d(\beta,\alpha) d(α,β)=d(β,α), which are separately positive roots for ∣ ∣ α − β ∣ ∣ 2 ||\alpha-\beta||^2 αβ2 and ∣ ∣ β − α ∣ ∣ 2 ||\beta-\alpha||^2 βα2.
( d ) By Theorem 1(iv), we have
d ( α , β ) = ∣ ∣ α − β ∣ ∣ = ∣ ∣ α − γ + γ − β ∣ ∣ ≤ ∣ ∣ α − γ ∣ ∣ + ∣ ∣ γ − β ∣ ∣ = d ( α , γ ) + d ( γ , β ) \begin{aligned}d(\alpha,\beta)&=||\alpha-\beta||=||\alpha-\gamma+\gamma-\beta||\\&\leq ||\alpha-\gamma||+||\gamma-\beta||=d(\alpha,\gamma)+d(\gamma,\beta)\end{aligned} d(α,β)=αβ=αγ+γβαγ+γβ=d(α,γ)+d(γ,β)

5.Let V V V be an inner product space, and let α , β \alpha,\beta α,β be vectors in V V V. Show that α = β \alpha=\beta α=β if and only if ( α ∣ γ ) = ( β ∣ γ ) (\alpha|\gamma)=(\beta|\gamma) (αγ)=(βγ) for every γ ∈ V \gamma\in V γV.
Solution: One direction is ovbious, conversely, if ( α ∣ γ ) = ( β ∣ γ ) (\alpha|\gamma)=(\beta|\gamma) (αγ)=(βγ), then ( α − β ∣ γ ) = 0 (\alpha-\beta|\gamma)=0 (αβγ)=0 for every γ ∈ V \gamma\in V γV, let γ = α − β \gamma=\alpha-\beta γ=αβ, we see that ∣ ∣ α − β ∣ ∣ 2 = 0 ||\alpha-\beta||^2=0 αβ2=0, or ∣ ∣ α − β ∣ ∣ = d ( α , β ) = 0 ||\alpha-\beta||=d(\alpha,\beta)=0 αβ=d(α,β)=0, which means α = β \alpha=\beta α=β.

6.Let W W W be the subspace of R 2 R^2 R2 spanned by the vector ( 3 , 4 ) (3,4) (3,4). Using the standard inner product, let E E E be the orthogonal projection of R 2 R^2 R2 onto W W W. Find
( a ) a formula for E ( x 1 , x 2 ) E(x_1,x_2) E(x1,x2);
( b ) the matrix of E E E in the standard ordered basis;
( c ) W ⊥ W^{\perp} W;
( d ) an orthonormal basis in which E E E is represented by the matrix [ 1 0 0 0 ] \begin{bmatrix}1&0\\0&0\end{bmatrix} [1000].
Solution:
( a ) E ( x 1 , x 2 ) = 3 x 1 + 4 x 2 25 ( 3 , 4 ) E(x_1,x_2)=\dfrac{3x_1+4x_2}{25}(3,4) E(x1,x2)=253x1+4x2(3,4).
( b ) E ( 1 , 0 ) = 3 25 ( 3 , 4 ) = ( 9 25 , 12 25 ) E(1,0)=\frac{3}{25}(3,4)=(\frac{9}{25},\frac{12}{25}) E(1,0)=253(3,4)=(259,2512) and E ( 0 , 1 ) = 4 25 ( 3 , 4 ) = ( 12 25 , 16 25 ) E(0,1)=\frac{4}{25}(3,4)=(\frac{12}{25},\frac{16}{25}) E(0,1)=254(3,4)=(2512,2516). Thus the matrix is
[ 9 25 12 25 12 25 16 25 ] \begin{bmatrix}\dfrac{9}{25}&\dfrac{12}{25}\\\dfrac{12}{25}&\dfrac{16}{25}\end{bmatrix} 2592512

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值