介绍
术语定义
- CTR,post-view Click-Through Rate,4% 量级。
- CVR, post-click ConVersion Rate, 5‰ 量级。
- CTCVR, post-view Click-Through&ConVersion Rate, 二者相乘,万分之二 量级。
主要贡献
- 解决SSB问题
Sample Selection Bias,样本选择偏差。
可以看到用户行为有 impression -> click ->conversion 的依赖路径。
传统的CVR模型,训练样本就是 post-click items(灰色区域) 。但预测时是在 post-view items (白色区域),与训练集存在偏差。
该工作通过 - 缓解 Data Sparsity
CVR任务的数据集规模是CTR任务的4%,过于稀疏,易导致网络学习不充分。
该工作引入CTR和CTCVR两个辅任务,优雅地解决了单阶段建模遇到的SSB和DS问题
网络结构
loss
实验
左边是cvr task,右边是 ctr task. 文中说 "The latter one is trained with much richer samples. " 那么疑问来了:
Q:对于曝光未点击样本, 此时CVR网络还要读特征参与训练么,此时的 loss 怎么算?
A: 应该是参与训练的。首先该文标榜entire-space 学习;其次看 loss 也是正常代入计算的。
评测
- CVR task
已点击样本为测试集,AUC绝对值提升 +2.56% - CTCVR task
已曝光样本为测试集,AUC绝对值提升 +3.25%。说明ESMM确实在SSB问题上有建树。
在线实验
无。
Q:在线怎么用?
A:一般会是
a
∗
c
t
r
+
b
∗
c
v
r
a*ctr+b*cvr
a∗ctr+b∗cvr这样。
参考
- SIGIR-2018,ESMM