(五)二叉树的广度优先遍历的递归实现与迭代实现

本文详细解析了二叉树和N叉树的层次遍历算法,包括广度优先遍历的迭代和递归实现方式,探讨了它们的区别,以及如何通过队列和递归实现层序遍历。重点介绍了levelOrderTraversal函数和levelOrder方法,展示了如何在Python中用deque和递归实现层序遍历的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

102.二叉树的层序遍历
107.二叉树的层次遍历II
199.二叉树的右视图
637.二叉树的层平均值
429.N叉树的层序遍历
515.在每个树行中找最大值
116.填充每个节点的下一个右侧节点指针
117.填充每个节点的下一个右侧节点指针II
104.二叉树的最大深度
111.二叉树的最小深度

以 102 题 为例子;

1. 广度优先遍历的 迭代实现

1.1 广度优先 与 深度优先, 两个迭代法的区别

区别于
深度优先遍历中:
存储访问的节点 使用的是栈,
由于 栈的 先入后出 特性, 从而导致了 在 深度优先遍历中,
树节点的入栈 顺序 和 结果集中保存的节点数值 顺序, 总是相反的;

而在 广度优先遍历中:
存储访问的节点 是一个队列, 并且是一个 双端队列, 方便直接从队首 取出元素;
从而 节点的 入队 顺序与 ,节点的数值保存到结果集中是一致的;

并且, 层序遍历中, 访问 当前节点, 与处理当前该节点中数值 正好可以做到同步;

1.2 算法步骤

层序遍历迭代法中关键思想:

初始化一个新队列1
遍历队列时, 在每次遍历到 一个新的层时:
新建一个空的队列2, 用于存放当前层节点的 左右孩子节点;
将队列1 更新为队列2, 队列1 = 队列2

算法步骤:


def levelOrderTraversal(root: TreeNode)-> list:
    if root == None:
        return []
        
    results = []
    que = [root]   # 根节点不为空, 将根节点入队;

    while que:    #  循环, 队列中还有节点时

        results.append([ cur_Node.val  for  cur_Node in que ])
        cur_level_child_node = []   #  用于存储当前层的孩子节点列表
        for  cur_Node in que:
            if cur_Node.left != None:
                cur_level_child_node.append(cur_Node.left)
            if cur_Node.right != None:
                cur_level_child_node.append(cur_Node.right)
        que = cur_level_child_node

    return results



------方法 2--------------------------

import collections
def levelOrderTraversal(root: TreeNode)-> list:
    results = []
    if root == None:
        return  results

    que = collections.deque([root])  # 根节点不为空, 将根节点入队;
    while que:    #  大循环, 队列中 还有节点时
        len_que = len(que)
        result = []
        for  _ in range(len_que):  #  更新队列为当前层的子节点队列;
            cur_Node = que.popleft()
            result.append(cur_Node.val)
            if cur_Node.left != None:
                que.append(cur_Node.left)
            if cur_Node.right != None:
                que.append(cur_Node.right)
        results.append(result)

    return results

2. 广度优先遍历的 递归实现

回顾一下递归三要素

  1. 递归函数的输入参数, 输出参数;
  2. 递归的 终止条件;
  3. 单层递归执行的步骤

注意 层序遍历的 递归遍历,
只要是 递归, 其本质 仍然是与 栈的实现有关,
这里体现在,

层序遍历时, 访问过的元素, 会被第二次访问,

故遍历的时候
在遍历到最底层的时候,
便会沿着之前遍历过的节点返回;

18 -> 7 -> 3 -> 7 -> 4 -> 7 -> 18 -> 11

如图中的 节点7 ,
被访问 三次, 第一次节点18 到 节点7,
第二次,节点 3 到节点7;
第三次, 节点4 到节点7
在这里插入图片描述

当结果集中, 列表的个数 == 层数时,
说明该节点 属于 传入的 第 depth 层中;
将其压入结果集中的 第 (depth -1) 个列表中;

2.1 算法步骤

  1. 创建结果集
  2. 递归函数
class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]:
        def level(root: TreeNode,  depth, result):
            if root == None:
                return []
            if len(result)  < depth: #  如果当前结果集中, 非空列表的个数 <  当前的 层数时;
               result.append([])
            
            # 将当前节点的数值存放到它所在树中的层数,该层数 对应到 结果集中的 第(depth -1) 个列表;
            result[depth - 1].append(root.val)

            if root.left != None:  # 如果该节点的左子树节点不为空,将该节点递归到保存到它所应该在的层数中;
               level(root.left,  depth + 1,  result)
            
            if root.right != None:
                level(root.right, depth + 1, result)
        
        result = [] #  结果集中,空列表,
        level(root, 1,  result)  #  根节点 是从层数 1 开始的;
        return  result
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值