信号的时域特征
- 短时能量 short time energy 与短时平均幅度值
- 短时过零率
- 短时自相关函数
- 短时平均幅度差函数
- 短时线性预测
1. 短时能量与短时平均幅度值
短时能量和短时平均赋值 可以用于语音活动检测,
无语音时短时能量较小;
清音,浊音分类,浊音的短时能量大于清音;
1 短时能量
对一帧信号内的所有采样点,取幅度值的平方,进行求和。
所以短时能量是一个单一的数值;
E x = ∑ n = 0 N − 1 ( x [ n ] ) 2 E_x = \sum^{N-1}_{n=0}(x[n])^2 Ex=n=0∑N−1(x[n])2
1.2 短时平均幅度值
由于短时能量中的平方运算,会放大高低信号之间的差距,
所以将平方运算,替换成取幅度值的绝对值,然后求平均值;
M x = 1 N ∑ n = 0 N − 1 ∣ x [ n ] ∣ M_x = \frac{1}{N} \sum^{N-1}_{n=0}|x[n]| Mx=N1n=0∑N−1∣x[n]∣
1.3 短时能量的应用
AGC: automatic gain control
自动增益控制: 将整个信号的能量趋于一个平稳的状态,避免出现某些地方的能量特别大;
对于信号中的每一个点,定义出他的能量;
该能量中包含了一个衰减系数, 越靠近n的采样信号,使得越靠近当前点N的地方, 对于当前的能量贡献越大, 越远则对能量的贡献越小;
E x ( n , α ) = ( 1 − α ) ∑ i = − ∞ n − 1 ( α n − i − 1 ) ) ( x [ i ] ) 2 E_x(n, \alpha) = ( 1 - \alpha) \sum^{ n - 1}_{ i = - \infty} (\alpha^{n-i -1)}) (x[i])^2 Ex(n,α)=(1−α)i=−∞∑n−1(αn−i−1))(x[i])2
从而将每一个采样点 x [ n ] ∣ x[n]| x[n]∣, 除以该点的能量值 E x ( n , α ) E_x(n, \alpha) Ex(n,α):
2. 短时过零率
短时过零率包含了信号中与频率相关的信息;
s g n ( x ) = 1 , i f , x > 0 sgn(x) = 1, if ,x > 0 sgn(x)=1,if,x>0
s g n ( x ) = − 1 , i f , x < 0 sgn(x) = -1, if ,x < 0 sgn(x)=−1,if,x<0
表示信号穿过零值的次数,短时过零率可以反应出信号的频率特征;
Z x = 1 2 ∑ n = 0 N − 1 ∣ s g n ( x [ n ] ) − s g n ( x [ n − 1 ] ) ∣ Z_x = \frac{1}{2} \sum^{N-1}_{n=0} |sgn(x[n]) - sgn(x[n-1]) | Zx=21n=0∑N−1∣sgn(x[n])−sgn(x[n−1])∣
3. 短时自相关系数
3.1 短时自相关系数
将原始的短时信号,向左平移K个单位,
然后,计算该信号与平移之后的相关度.
不同的K,都会产生一个不同的
R
x
(
k
)
R_x(k)
Rx(k),
R x ( k ) = ∑ n = 0 N − 1 x [ n ] x [ n + k ] R_x(k) = \sum^{N-1}_{n=0} x[n] x[n+k] Rx(k)=n=0∑N−1x[n]x[n+k]
所以由一组不同的K值,可以构成的特征 R x ( k ) R_x(k) Rx(k);
3.2 作用 pitch detection
用于周期信号,
当该短时信号是周期信号,当K=周期或周期的倍数时, R x ( k ) R_x(k) Rx(k)会取到最大值;
即 R x ( k ) R_x(k) Rx(k) 包含了短时信号的关于基频 F0 的信息;
3.1 短时幅度差函数:
与短时自相关系数不同的是,将信号右移动K;
当K=周期或周期的倍数时, γ x ( k ) \gamma _x(k) γx(k)会取到最小值;
短时自相关系数与心肺音的频率会有关系;
两种方式可以同时结合使用,提高心肺音的检测,和时间的定位;
4. 短时线性预测编码
4.1 短时线性预测编码
每个采样点,可以先前的采样点,通过线性组合的方式估计出来。
4.2 线性预测倒谱系数
通过LPC中的系数 α i \alpha_{i} αi 可以求出
线性预测倒谱系数中的LPCC,