百度强化学习基础课程学习记

这篇博客记录了作者参与百度强化学习七日打卡营的学习经历,详细介绍了强化学习的基础概念,包括智能体与环境的交互、强化学习与深度学习的区别、不同类型的强化学习算法,如Sarsa、DQN、PG、DDPG等。文中提到了PARL框架的优势,GYM环境的使用,并引用了其他学员的文章来深入讨论各个主题。
摘要由CSDN通过智能技术生成


本人入门深度学习一年多,主要是对语义分割进行了初步研究,经过一年多的看书,包括西瓜书、花书、以及李航老师的统计学习等书,理论收获很多,但是python等上手环节很弱,用了caffe几个月,总感觉资源少,这严重限制了我的实践能力及速度,因此想学python。还好,有个道友给我发了廖大牛的python视频资料,让我python有很大长进,这让我对视频学习的效率有充分肯定,通过视频课程学习能压缩宝贵的学习时间。
深度学习火热有一部分是强化学习点燃的,我也对强化学习特别敢兴趣,在网上看了好多博客,感觉一堆公式,头大,因此想起了找视频来学习。
自己真的很幸运啊,正好百度基于paddlepaddle的 强化学习7日打卡营开课,我就开始了紧张的课程学习。科科老师真的对强化学习理解很深,后来估计,这课上完抵得上2个月的自学收获。好希望后面还能学到些进阶版~~~
下面我就按照下图老师ppt的课程安排简单介绍并总结我学到的知识,回顾也能使我进一步加深理解此课程~

七日打卡营第一天

第一天主要进行预习,也是五日课程的前一天,预习包括深度学习基本知识,数学基础,python基础,paddlepaddle基本的学习。对于新人来说一天时间有点紧张,学习知识还是蛮多的,但是提前几天就开放了学习资料,因此,收获还是挺多的,我因为学习过深度学习,基本概念过得很快。
特别强调,百度AI Studio 还是很方便的,可以有免费CPU运行示例,感觉和anaconda的Notebook很像,很好用,PaddlePaddle框架也不错,动静结合,很容易上手。并且课程学习网页的示例代码能直接在AIStudio环境运行,因为学过机器学习,运行一些线性回归无压力。即复习了算法、数学、python知识,有加深了Paddle框架的理解。真的不是打广告,估计未来paddle框架国内肯定越来越受欢迎,对百度AI的发展充满信心。

七日打卡营第二天(强化学习初印象)

科科老师给搭梯子,入门很容易,数学基础要求不高,大学基础,python有一些初步基础就行。需要神经网络有些认知。

书籍推荐:《强化学习导论》 ,我花了100多大元买了。
强化学习初印象科科老师讲的很形象,将强化学习智能体的学习过程和小孩的成长结合起来。抽象结构如下:
在这里插入图片描述

强化学习抽象成两部分:

  • 智能体(Agent)

  • 环境(enviroment)

交互需要三要素:

  • state(状态)/observation(观察值) 单多个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值