打印查看pytorch 的神经网络模型及参数

本文详细介绍了如何在PyTorch中查看神经网络模型的结构和参数,包括使用parameters()和named_parameters()方法来遍历和打印模型参数,以及利用state_dict()方法获取模型的状态字典。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打印查看pytorch 的神经网络模型及参数

net = resnet()#实例化网络
for parameters in net.parameters():#打印出参数矩阵及值
        print(parameters)

for name, parameters in net.named_parameters():#打印出每一层的参数的大小
       print(name, ':', parameters.size())

for param_tensor in net.state_dict():  # 字典的遍历默认是遍历 key,所以param_tensor实际上是键值
        print(param_tensor, '\t', net.state_dict()[param_tensor].size())

打印查看网络参考这个链接

具体的两个有什么不同如下链接进行了比较state_dict和parameters两个方法的差异比较

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值