Pytorch获取神经网络各层的参数名称及参数值

一、parameters()

model.parameters()可以返回model网络的可学习参数,具体代码如下:

import torch.nn as nn

# 定义网络
class Net(nn.Module):
  def __init__(self):
    # nn.Module的子类必须在构造函数中执行父类的构造函数
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 6, 5) # 依次为输入通道、输出通道和卷积核
    self.conv2 = nn.Conv2d(6, 16, 5)
    self.fc1 = nn.Linear(400, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

net = Net() # 创建网络
# print(net) # 打印网络

# 仅查看网络中的可学习参数(遍历)
for params in net.parameters():
    # print(params)
    # print(params.data) # 获取纯数据
    print(params.shape)

在这里插入图片描述

也可以通过下述方式进行获取:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信小海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值