一、parameters()
model.parameters()可以返回model网络的可学习参数,具体代码如下:
import torch.nn as nn
# 定义网络
class Net(nn.Module):
def __init__(self):
# nn.Module的子类必须在构造函数中执行父类的构造函数
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 依次为输入通道、输出通道和卷积核
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(400, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
net = Net() # 创建网络
# print(net) # 打印网络
# 仅查看网络中的可学习参数(遍历)
for params in net.parameters():
# print(params)
# print(params.data) # 获取纯数据
print(params.shape)
也可以通过下述方式进行获取: