yolov5 tain.py部分代码详解

本文详细解读了YoloV5的tain.py文件中关键的训练代码段,包括模型训练流程、损失函数和优化器设置等核心内容。
摘要由CSDN通过智能技术生成

yolov5 tain.py部分源码详解

``

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    #模型的训练权重
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
    #模型的配置文件
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    #数据集的配置文件
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
    #超参数配置文件
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    #模型训练的总代数
    parser.add_argument('--epochs', type=int, default=300)
    #一次加载的图片大小
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
    #训练与测试的图片尺寸
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    #是否使用矩形训练,默认为False
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    #断开后继续原有last.pt训练
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    #只保留最后一次的训练,默认为False
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    #只对最后一次进行测试,默认为False
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    #不进行自适应锚框,默认为False
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    #是否进行超参数进化,默认为False,主要使用的是遗传算法,最好不进行,耗费太多资源
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    #谷歌云盘bucket
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    #缓存图像以加快训练速度
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    #是否选用加权图像进行训练???
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    #训练的设备
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    #是否进行多尺度训练
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    #是否为单个类别
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    #是否使用Adam优化器
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    #是否使用跨卡同步BN, 在DDP模式使用
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    #gpu编号
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    #dataloader的最大worker数量
    parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
    #保存训练结果的路径
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--entity', default=None, help='W&B entity')
    #保存训练结果文件名
    parser.add_argument('--name', default=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chxuy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值