题目链接:http://poj.org/problem?id=2096
题意:一个bug属于一个分类和一个子系统,现在有n个分类和s个子系统,然后一天可以发现一个bug,这个bug等概论属于一种分类和一种子系统。问发现多有类别的bug和所有类别的子系统的期望天数。
思路:概率dp,dp[i][j]表示已经发现了i个分类和j个子系统,达到目标的期望天数。求期望用倒推,dp[n][s] = 0,dp[i][j] = (i*j)/(n*s)*dp[i][j] + (n-i)*j/(n*s)*dp[i+1][j] (发现一种新的类别) + i*(s-j)/(n*s)*dp[i][j+1] + (n-i)*(s-j)/(n*s)*dp[i+1][j+1] + 1 (既发现新类别,又发现新系统).对这个式子进行化简,然后递推,dp[0][0]即是答案。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define Clean(x,y) memset(x,y,sizeof(x))
#define rep(i,j,k) for(int i = j; i <=k; i++)
#define Rrep(i,j,k) for(int i = j; i >=k; i--)
const int maxn = 1002;
int n,s;
double dp[maxn][maxn];
int main()
{
scanf("%d%d",&n,&s);
dp[n+1][s] = dp[n][s+1] = dp[n][s] = 0;
Rrep(i,n,0)
Rrep(j,s,0)
{
if ( i == n && j == s ) continue;
dp[i][j] = ( (n-i)*(s-j)*dp[i+1][j+1] + (n-i)*j*dp[i+1][j] + i*(s-j)*dp[i][j+1] + n*s )/(n*s-i*j) ;
}
printf("%0.7f\n",dp[0][0]);
return 0;
}