一、 关联规则
关联规则是数据库和数据挖掘领域中所发明并被广泛研究的最为重要的模型。关联规则的目标是在数据项目中找出所有的并发关系,这种关系也称为关联。
1.基本概念
关联规则的形式:设1=i,iz...im是一个项目集合,T是一个事务集合,其中每个事务t;是一个项目集合,并满足t;EI,一个关联规则可以表示成如下形式的蕴含关系:X→Y,其中X属于Y,Y属于I且X交Y非空。
2.关联规则强度指标
支持度和置信度是两个常用的衡量关联规则强度的指标关联规则X> Y的支持度是数据库中包含XUY 的事务占全部事务的百分比。它是概率P(XUY),记作 support(X=Y)=P(XUY).
关联规则X→Y的置信度是包含XUY 的事务与包含X的事务数的比值。它是概率P(Y|X),记作 confidence(X=Y)=P(Y|X)。
3.频繁项集
每个属性由多个元素组成,这里的元素称为项,多个项组成的集合称为项集。如果某个项集的支持度大于或等于预先设定的最小支持度阚值,则将这个项集称为频繁项集或大项集,所有的频繁k项集组成的集合通常记为Lk。
二、关联规则挖掘算法
关联规则挖掘算法中,Apriori算法最为著名,其挖掘的过程主要包含两个阶段:第一阶段先从数据集中找出所有的频繁项集,它们的支持度大于等于最小支持度闯值。第二阶段由这些频繁项集产生关联规则,计算它们的置信度,然后保留那些置信度大于等于最小置信度阚值的关联规则。
1.Apriori 算法中候选集合的产生
(1)连接
为了找Lk,通过Lk-1与自己连接产生候选k项集的集合,该候选k项集记为Ck:Lk