Chapter 3 Neurons: From Biological to Computational

本文探讨了神经元模型的不同层面,从单室模型到生物可解释模型,再到生物相似模型和生物抽象模型。介绍了霍奇金-赫克斯利模型、莫里斯-莱卡尔模型、菲茨休-纳古穆模型、辛德马什-罗斯模型以及伊兹基耶维奇模型等,展示了模型如何从复杂的生物机制简化为适用于计算的表示。这些模型在不同复杂性和精度之间取得平衡,用于理解和模拟神经网络中的信息处理。
摘要由CSDN通过智能技术生成

1 Why

Neurons are fundamental components of spiking neural networks. Information processing relies on different characteristics of neurons. Therefore, in this chapter, we will explore different neuron models that have different characteristics. It should be noted that there is never the best model, only the most suitable model. So, never evaluate a neuron model without its application scenario.

2 Single Compartmental Modelling

How to build a neuron model? How many details should a neuron model has? The compartmental modelling approach gives an answer to these questions.

Neurons consist of many components, including axons, dendrites, soma and etc. Some structures are very long in length and very large in number. It is very intricate to simulate a neuron as a whole. But we usually solve a complicated problem by simplifying it: split neurons into discrete areas and describing each discrete part separately is easier. So, such discrete parts are called compartments.

Then, we must face a new question: “How detailed should compartments be?”. Of course, if we have enough time and efforts, we can make compartments as small as possible. But this will lead to thousand of equations and parameters to construct a neuron model which greatly undermines efficiency of the model. Moreover, in spiking neural networks, we are more interested in neurons as a whole rather than spare no efforts to simulate neurons as detailed as possible. Taking these into consideration, we usually treat a neuron as one compartment so this is called single compartmental modelling. Figure shows different levels of compartments in neurons.

Compartmental model
Fig. 1: Levels of compartmental models. (a) show the original neuron. (b) is detailed compartmental model. © is reduced compartmental model. Compared with (b), compartments in © represent larger areas. (d) is single compartmental model. The neuron is regarded as a whole.

Although detailed compartmental models can simulate neurons in an almost realistic way, they also lead to huge computational complexity. Single compartmental models simplify the representation of neurons. Such simplification makes these models easy to apply in large networks due to their balance between accuracy with complexity.

Therefore, in this chapter, we will introduce single compartmental models. They can be categorized into three groups. You can see them developing from biologically explainable to abstract, from biological to computational and from complex to simple.

3 Biologically Explainable Models

These models are based on ion channels on membrane. In biology, the ion flow between membrane triggers changes of membrane potential and then lead to spikes. The mechanism in biology is quite complicated so that here we only provide brief introductions to get you some rough understandings.

3.1 Hodgkin-Huxley Model

Hodgkin et al found by experiments that there were two main ion channels on membrane. One was sodium ion channel and the other was potassium ion channel. Apart from two main channels, they believed that there were channels mainly for chloride ion and formed the leakage current. They showed such mechanism by an equivalent circuit in Figure 2.

Hodgkin-Huxley model
Fig. 2: An equivalent circuit of Hodgkin-Huxley model.

To describe its mechanism, we use the following differential equation system to specify how variables change with time.
{ C m d V d t = − g L ( V − E L ) − g ˉ N a m 3 h ( V − E N a ) − g ˉ K n 4 ( V − E K ) + I d m d t = α m ( V ) ( 1 − m ) − β m ( V ) m d h d t = α h ( V ) ( 1 − h ) − β h ( V ) h d n d t = α n ( V ) ( 1 − n ) − β n ( V ) n \begin{cases} C_m\frac{dV}{dt}=-g_L(V-E_L)-\bar{g}_{Na}m^3h(V-E_{Na})-\bar{g}_Kn^4(V-E_K)+I\\ \frac{dm}{dt}=\alpha_m(V)(1-m)-\beta_m(V)m\\ \frac{dh}{dt}=\alpha_h(V)(1-h)-\beta_h(V)h\\ \frac{dn}{dt}=\alpha_n(V)(1-n)-\beta_n(V)n\\ \end{cases} CmdtdV=gL(VEL)gˉNam3h(VENa)gˉKn4(VEK)+Idtdm=αm(V)(1m)βm(V)mdtdh=αh(V)(1h)βh(V)hdtdn=αn(V)(1n)βn(V)n
where C m C_m Cm is membrane capacity, g L g_L gL is leaky electrical conductance, E L E_L EL is leaky reversal potential (or resting potential), E N a E_{Na} ENa and E K E_K EK are reversal potential of N a + {Na}^+ Na+ and K + K^+ K+ respectively, g ˉ N a \bar{g}_{Na} gˉNa and g ˉ K \bar{g}_K gˉK are max electrical conductance of N a + {Na}^+ Na+ and K + K^+ K+ respectively. In above system, there are some variables that need to be defined further.
{ α m ( V ) = 0.1 25 − V e 25 − V 10 − 1 β m ( V ) = 4 e − V 18 α h ( V ) = 0.07 e − V 20 β h ( V ) = 1 e 30 − V 10 + 1 α n ( V ) = 0.01 10 − V e 10 − V 10 − 1 β n = 0.125 e − V 80 \begin{cases} \alpha_m(V)=0.1\frac{25-V}{e^{\frac{25-V}{10}}-1}\\ \beta_m(V)=4e^{-\frac{V}{18}}\\ \alpha_h(V)=0.07e^{-\frac{V}{20}}\\ \beta_h(V)=\frac{1}{e^{\frac{30-V}{10}}+1}\\ \alpha_n(V)=0.01\frac{10-V}{e^{\frac{10-V}{10}}-1}\\ \beta_n=0.125e^{-\frac{V}{80}}\\ \end{cases} αm(V)=0.1e1025V125Vβm(V)=4e18Vαh(V)=0.07e20Vβh(V)=e1030V+11αn(V)=0.01e1010V110Vβn=0.125e80V

As shown above, the Hodgkin-Huxley model needs very complicated definitions. Such complexity hinders its applications in spiking neural networks when efficiency is considered.

3.2 Morris-Lecar Model

Morris et al proposed a simpler model by simulating C a 2 + {Ca}^{2+} Ca2+ and K + K^+ K+ in neurons. The equivalent circuit of Morris-Lecar model are depicted by Figure 3.

An equivalent circuit of Morris-Lecar model.
Fig. 3: An equivalent circuit of Morris-Lecar model.

They applied two differential equations to describe mechanisms:

{ C m d V d t = − g L ( V − E L ) − g ˉ C a m ∞ ( V ) ( V − E C a ) − g ˉ K n ( V − E K ) + I d n d t = λ ( V ) ( n ∞ ( V ) − n ) \begin{cases} C_m\frac{dV}{dt}=-g_L(V-E_L)-\bar{g}_{Ca}m_\infty(V)(V-E_{Ca})-\bar{g}_Kn(V-E_K)+I\\ \frac{dn}{dt}=\lambda(V)(n_\infty(V)-n)\\ \end{cases} {CmdtdV=gL(VEL)gˉCam(V)(VECa)gˉKn(VEK)+Idtdn=λ(V)(n(V)n)

where I C a I_{Ca} ICa, I K I_K IK, I L I_L IL and I I I represent C a 2 + {Ca}^{2+} Ca2+ current, K + K^+ K+ current, leaky current and input current respectively and V V V represents membrane potential. Some parameters are defined further by following equations:

{ m ∞ ( V ) = 0.5 ( 1 + t a n h ( V − V 1 V 2 ) ) n ∞ ( V ) = 0.5 ( 1 + t a n h ( V − V 3 V 4 ) ) λ ( V ) = λ ˉ c o s h ( V − V 3 2 V 4 ) \begin{cases} m_\infty(V)=0.5(1+tanh(\frac{V-V_1}{V_2}))\\ n_\infty(V)=0.5(1+tanh(\frac{V-V_3}{V_4}))\\ \lambda(V)=\bar{\lambda}cosh(\frac{V-V_3}{2V_4}) \end{cases} m(V)=0.5(1+tanh(V2VV1))n(V)=0.5(1+tanh(V4VV3))λ(V)=λˉcosh(2V4VV3)

4 Biologically Similar Models

Compared with above models, these models become simpler by giving up to describe hydronium between membrane. Instead, they directly analyse membrane potential. In this way, models can get rid of too many differential equations. They can be efficient enough to be applied in large networks but are still complicated due to non-linear differential equations.

4.1 FitzHugh-Nagumo Model

FitzHugh-Nagumo model simplifies Hodgkin-Huxley model by approximately treating n n n and h h h in Hodgkin-Huxley model as one constant. This simplification makes it possible to describe neuron in the following way:

{ d V d t = V ( V − α ) ( 1 − V ) − U + I d U d t = ϵ ( V − γ U ) \begin{cases} \frac{dV}{dt}=V(V-\alpha)(1-V)-U+I\\ \frac{dU}{dt}=\epsilon(V-\gamma U)\\ \end{cases} {dtdV=V(Vα)(1V)U+IdtdU=ϵ(VγU)

where V V V is membrane potential, U U U represents restoring ability, I I I represents input current, α \alpha α, ϵ \epsilon ϵ and γ \gamma γ are all constants and 0 < α < 1 0<\alpha<1 0<α<1, ϵ ≪ 1 \epsilon \ll1 ϵ1.

4.2 Hindmarsh-Rose Model

Rose et al described neurons by the following system:

{ d V d t = U + ϕ ( V ) − W + I d U d t = ψ ( V ) − U d W d t = ϵ ( s ( V − V R ) − W ) \begin{cases} \frac{dV}{dt}=U+\phi(V)-W+I\\ \frac{dU}{dt}=\psi(V)-U\\ \frac{dW}{dt}=\epsilon(s(V-V_R)-W)\\ \end{cases} dtdV=U+ϕ(V)W+IdtdU=ψ(V)UdtdW=ϵ(s(VVR)W)
where I I I is input current, ϵ \epsilon ϵ and s s s are scaling parameters. ϕ ( V ) \phi(V) ϕ(V) and ψ ( V ) \psi(V) ψ(V) are functions that are defined by experience:
{ ϕ ( V ) = − a V 3 + b V 2 ψ ( V ) = c − d V 2 \begin{cases} \phi(V)=-aV^3+bV^2\\ \psi(V)=c-dV^2\\ \end{cases} {ϕ(V)=aV3+bV2ψ(V)=cdV2

4.3 Izhikevich Model

Izhikevich et al proposed a two-dimensional system to describe neurons:
{ d V d t = 0.04 V 2 + 5 V + 140 − U + I d U d t = a ( b V − U ) \begin{cases} \frac{dV}{dt}=0.04V^2+5V+140-U+I\\ \frac{dU}{dt}=a(bV-U)\\ \end{cases} {dtdV=0.04V2+5V+140U+IdtdU=a(bVU)
and if the membrane potential becomes no less than 30mV, the following reset mechanism will be applied:
{ V ← c U ← U + d \begin{cases} V\leftarrow c\\ U\leftarrow U+d \end{cases} {VcUU+d
where V V V is membrane potential, U U U represents restoring ability, a a a, b b b, c c c, d d d are all hyper-parameters to control how neurons should fire.

5 Biologically Abstract Models

These models directly treat spikes as an event requiring some conditions. Non-linear differential equations are replaced with linear equations so that analysing is easier. For this reason, such models have been widely used in many experiments.

5.1 Integrate-and-Fire Model

Integrate-and-fire model directly describe the relationship between input current I I I and membrane potential V V V by the following equation:

τ m d V d t = V r e s t − V + R m I \tau_m\frac{dV}{dt}=V_{rest}-V+R_mI τmdtdV=VrestV+RmI

where τ m = C m R m \tau_m=C_mR_m τm=CmRm is time constant.

The reset mechanism is also simple: if membrane potential V V V goes equal or larger than threshold V t h r e s h o l d V_{threshold} Vthreshold, neurons will immediately generate a spike and the membrane potential V V V is instantly reset as resting potential V r e s e t V_{reset} Vreset which keeps unchanged during refractory period t r e f t_{ref} tref; otherwise the membrane potential V V V will gradually decrease to resting potential V r e s t V_{rest} Vrest.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值