Pipeline学习器流水线

本文介绍了sklearn的Pipeline,它允许将多个学习器串联成一个流水线,通常包括数据预处理、特征提取和预测。Pipeline的每个步骤由(name, transform)元组构成,其中transform必须提供transform方法。Pipeline提供了fit、transform、fit_transform和inverse_transform等方法,方便进行数据处理和预测。最后,通过pipeline.named_steps可以访问流水线中每个步骤的学习器,而pipeline.score则给出流水线中最后一个学习器的预测性能。" 131365864,7429428,理解均方误差与交叉熵损失函数,"['机器学习', '损失函数', '模型训练', '预测模型', '数据科学']
摘要由CSDN通过智能技术生成

sklearn提供了Pipeline将多个学习器组成流水线。通常,流水线的形式为:将数据标准化的学习器-->特征提取的学习器-->执行预测的学习器。除了最后一个学习器之外,之前的所有学习器必须提供tranform方法,该方法用于数据变换(如归一化,正则化,以及特征提取等)。

Pipeline的原型为:

class sklearn.pipeline.Pipeline(steps)


参数:

steps:一个列表,列表的元素为(name,transform)元组,其中name是学习器的名字,用于输出和日志;transform是学习器,之所以叫transform是因为这个学习器(除了最后一个)必须提供transform方法。

属性:

named_steps:一个字典,字典的键就是steps中各元组的name元素,字典的值就是steps中各元组的transform元素。

方法:

fit(X[,y]):启动流水线,依次对各个学习器(除了最后一个学习器)执行fit方法和transform方法转换数据,对最后一个学习器执行fit方法训练学习器。

transform(X):启动流水线,依次对各个学习器执行fit方法和transform方法转换数据。要求每个学习器都实现了tranform方法。

fit_transform(X[,y]):启动流水线,依次对各个学习器(除了最后一个学习器)执行fit方法和transform方法转换数据,最后一个学习器执行fit_transform方法转换数据。

inverse_transform(X):将转换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值