[ML笔记]多元线性回归

才发现这篇文档在草稿箱里呆了一个多星期了,上周因为公司的一个事情,第二周的Coursera课程没有完成~~|||

引言

引言被笔者吃了。

多元特征(Multiple Feature)

多元特征示例

内容含义
训练样本个数
n特征个数,比如有 θ1,θ2,θ3,θ4n=4
x(i) 第i个训练样本的所有输入特征,可以认为是一组特征向量
x(i)j 第i个训练样本第j个特征的值,即特征向量第j个值


多元假设函数表达式如下
hθ(x)=θ0+θ1x1+θ2x2+θ3x3+....+θnxn

使用矩阵来表示这个表达式可以表示为:
hθ(x)=[θ0θ1θ2...θn][x0x1x2...xn]=θTx
我们规定 x(i)0=1(i1,......m) ,因此上式等式可以成立。

多元特征的梯度下降

上上一篇讲梯度下降的博文,推导了 θ0θ1 的计算方法,这里就不再赘述,不懂的朋友看文章,这里直接给出 θj 的计算方法:
repeat util convergence: {

   θj:=θjα1mm1((hθ(x(i))y(i))x(i)j)j:=0,..,n
   
}

因为 x(i)0=1(i1,......m) ,所以这个算法和旧算法一致,
算法原理

梯度下降方法:特征缩放

特征缩放原理

如果两个特征变量,在不同维度之间的取值范围相差较大的化,会使我们在使用梯度下降算法的时候,因维度差异造成代价函数收敛发生震荡,而导致收敛速度较慢。如下图所示,
特征缩放目的
为了解决这个问题,我们引入特征缩放,将特征值通过某些算法,将特征值锁到一个相似的取值范围内,以加快收敛速度,这个取值范围比如
1x(i)1  0.5x(i)0.5
都是可以的,那么最后收敛过程可能如上图右所示。

特征缩放算法

有两种技术可以帮助我们解决该问题:均值归一化和特征缩放。
特征缩放:直接将输入值除以输入变量范围的最大值(如最大值-最小值),来将输入取值范围缩小到1。
均值归一:将输入值减去取值平均值,然后除以输入变量范围差值,或者是除以输入变量标准差。公式如下,
xi:=xiμisi
其中, μi 指输入变量x的平均值, si 是指输入变量范围差值

梯度下降之α(Learning Rate)

上上篇博文中提到过有关Learning Rate需要注意的地方,这里再提出来一次

如果learning rate 太小了,梯度下降就会很慢;
如果learning rate太大,那么梯度下降可能掠过最小值,就可能出现无法收敛,甚至出现发散的现象。

关于Learning Rate的选择的正确做法:

实时观察代价函数变化,如果代价函数变小了,则learning rate取得合适,如果代价函数变大了,则应该减小learning rate的值。

我们通常可以通过代价函数的变化函数图观察我们的Learning Rate是否选择合适,例如,正常的轮廓图如下,
收敛成功

代价函数随着迭代次数累计,结果慢慢减小,后续逐渐趋于平稳,直至不再变化,则说明已经收敛完成。
但如果轮廓图表现如下,则说明我们的Learning Rate选择并不合适,需要减小Learning Rate的值。
收敛失败

特征值与多项式回归

我们可以通过一些小技巧,来改进我们假设函数和特征的形式,将多种特征合并成一个,比如,我们假设合并特征 x1,x2 为一个新特征 x3

一般来说,样本的假设函数通常都不是一个单变量线性(直线)函数,大多数的假设函数实际是一条曲线,我们可通过假设样本数据的二次,三次或者是平方根函数(或任何其他形式)来改变我们假设函数的行为或者曲线。

比如,
常规线性假设函是: hθ(x)=θ0+θ1x1

二次假设函数我们可以设计成: hθ(x)=θ0+θ1x1+θ2x21
或者是 hθ(x)=θ0+θ1x1+θ2x21+θ3x31

在三次假设函数这个案例中,我们可以创建两个新特征, x2x3 ,其中,
x2=x21,x3=x31, ,那假设函数又转换为线性回归:
hθ(x)=θ0+θ1x1+θ2x2+θ3x3

或者我们在设特征幂次的时候,可<1,即开根,也是可以的,
比如 hθ(x)=θ0+θ1x1+θ2x121

需要提醒的是,如果使用这种方式选择特征,特征缩放算法尤为重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值