first order system analysis 自控原理 一阶系统的matlab分析

本文通过MATLAB仿真研究了一阶系统对阶跃激励的响应,探讨了不同时间常数T下系统响应速度的变化。通过代码实现,直观展示了系统稳定性与响应速度之间的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一阶系统的matlab分析





上图是用simulink仿真的一阶系统对阶跃型号的响应


传递函数可以简化为theta(s) = K/(Ts+1)

为方便研究,K为常数,令K等于1。
探究不同的T情况下,一阶系统对阶跃激励的响应。
时间常数T越大,反应越迟钝,时间常数T越小,反应越敏捷
代码很简单的,matlab各种封装好的数学处理函数,用起来很方便,和C比起来难度不知道低多少,我们要做的就是不知道就google。然后just use the function is OK!
source code:
%%*************************************************************
% code writer: EOF
% code date:2014.03.18
% e-mail: jasonleaster@gmail.com
% code purpose : 
%           I just want to share with someone who is interesting
% in adaptive control. This code is to help people to understand
% first order system.
%%**************************************************************
clear all
clc
syms s f t m;
K = 1;
hold on;
figure(1);
for  T = 1:4
    f = (K./(T.*s+1)).*(1./s);
    m = ilaplace(f);
    ezplot(m,[0,10]);
end

随着T的增大,可以看出,系统趋向于稳定的时间越长,响应速度越差。

Thank you。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值