Do You Like Interactive Problems?

Problem - 7386

Do You Like Interactive Problems?
2023钉耙编程(10)D题:

Problem Description
现在有一个整数 x xx ( 1 ≤ x ≤ n ) (1 \le x \le n)(1≤x≤n),但你不知道 x xx 。

你可以进行以下的询问方式,选择一个随机的整数 y yy ( 1 ≤ y ≤ n ) (1 \le y \le n)(1≤y≤n) ,每次询问是相互独立的,询问后你会被告知 x xx 和 y yy 满足 x < y , x > y , x = y x < y,x > y,x = yx<y,x>y,x=y 三种关系中的哪一种。

现在给出具体 n nn 后,求期望询问次数。

Input
第一行输入一个整数 T TT ( 1 ≤ T ≤ 100 ) (1 \le T \le 100)(1≤T≤100),表示测试组数。
接下来 T TT 行每行输入一个整数 n nn ( 1 ≤ n ≤ 1 0 9 ) (1 \le n \le 10^9)(1≤n≤10 
9
 )。

拿到这道题首先看是问的期望询问次数。故使用概率的分布问题:
首先判断n=1时,明显可以看出来ans = 0;
其次判断n!= 1 时,分种情况
(1): 当这个x在两端时,也就是在1,n两者之间时:
        1)我们猜到是x或者相邻的数的概率是2/n,还需要猜0次。

        2)我们猜到其他点时概率为n-2/n,还需要再猜ans次;
    于是我们得到了ans = 2/n * 0 + n-2/n * ans + 1 >> ans = n/2;

(2): 当这个x在中间时:
        1)我们猜到x的概率时1/n,还需要猜0次;

        2)我们猜到x左右相邻的数的概率是2/n,然后再去猜x需要2/n次;

        3)我们猜到其他点时概率为n-3/n,还需要再猜ans次;
    于是我们得到了ans = 1/n * 0 + 2/n * n/2 + n-3/n * ans + 1 >> ans = 2*n/3;

我们把两种情况合起来:
ans = 2/n * n/2 + n-2/n * 2*n/3 >> 2 * n-1/3; 


ok!!?  推到这里估计都烦了,是不是以为直接输出2*n-1/3就行了???

不不不不!     他还要取模mod = 998244353
在这里还要用到拓展欧几里得算法进行取模运算,因为直接取模运算除以3会导致吞数,所以用到对模运算进行操作处理来防止这种情况发生。

以下代码:

#include<iostream>
using namespace std;
typedef long long ll;
const int mod = 998244353;
int t;
ll n,ans;

void exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x = 1,y = 0;
        return;
    }
    
    exgcd(b,a%b,y,x);
    y -= a/b*x;
    return;
}

void solve()
{
    int x,y;
    cin>>n;
    if(n==1)
    {
        cout<<0<<endl;
        return;
    }
    ans = (2 * n - 1);
    exgcd(3,mod,x,y);
    ans*=x;
    cout<<ans%mod<<endl;
    return;
}
int main()
{
    cin>>t;
    while(t--)
    {
        solve();
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值