论文链接:LLaMA: Open and Efficient Foundation Language Models
代码链接:https://github.com/Meta-Llama/llama
作者:Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample
发表单位:Meta AI
会议/期刊:无
一、研究背景
1.1 现有方法的局限性
-
大部分现有的大规模语言模型(LLMs)如GPT-3和PaLM等,依赖于私有和不可访问的数据集进行训练,使得研究社区难以复现和改进这些模型。
-
Hoffmann等人(2022年)的研究表明,在给定的计算预算下,最大的模型并不总是表现最好的(过去很多人假设参数越多,性能越好),相反,较小的模型在更多数据上进行训练可以达到更好的性能。
-
然而,Hoffmann的缩放定律目的是为了确定怎么在特定的训练预算下最佳缩放数据集和模型大小。但是这个目标忽略了推理预算,作者认为训练时间更长的小模型可以让推理方面更加省钱。
1.2 论文贡献
这项工作的重点是训练一系列语言模型,通过训练比通常情况下更多的词块,在各种推理预算下实现最佳性能。由此产生的模型称为 LLaMA(7B-65B)。本文有如下贡献:
-
训练一系列在不同推理预算下