我认知的项目组合管理

 

通过学习《项目组合管理》课程并接合自己的项目实践,下面聊聊我对项目组合管理的一些认知:

 

(一)   项目组合管理不同于项目和项目集

               

                  01 项目、项目集与项目组合管理之比较

 

项目(Project)

项目集(Programs)

项目组合(Portfolios)

范围

 

项目有明确的目标。其范围在整个项目生命周期中渐进明细

项目集的范围更大,并能提供更显著的利益

项目组合的业务范围随组织战略目标的变化而变化

变更

项目经理预期变更,并执行一定的过程来确保变更处于管理和控制中

项目集经理必须预期来自项目集内外的变更,并为管理变更做好准备

项目组合经理在广泛的环境中持续监督变更

规划

项目经理在整个项目生命周期中,逐步将宏观信息细化成详细的计划

项目集经理制定项目集整体计划,并制定项目宏观计划来指导下一层次的详细规划

项目组合经理针对整个项目组合,建立与维护必要的过程和沟通

管理

项目经理管理项目团队来实现项目目标

项目集经理管理项目集人员和项目经理,建立愿景并统领全局

项目组合经理管理或协调项目组合管理人员

成功

以产品与项目的质量、进度和预算达成度以及客户满意度来测量成功

以项目集满足预定需求和利益的程度来测量成功

以项目组合所有组成部分的综合绩效来测量成功

监督

项目经理对创造预定产品、服务或成果的工作进行监控

项目集经理监督项目集所有组成部分的进展,确保实现项目集的整体目标、进度、预算和利益

项目组合经理监督综合绩效和价值指标

领导

风格

领导风格聚焦在任务交付的产出物以满足项目成功准则

聚焦在项目间关系和冲突的解决。管理干系人管理中的权利和政治

领导风格聚焦在增加组合决策的价值提升

关键

技能

通过知识和技能激发整个团队的行动者

提供愿景和领导力

提供深刻的见解和整合能力的领导

 

从上表中可以看出,项目组合管理是指为了实现组织的战略和特定的战略业务目标,对一个或多个项目组合进行的集中管理,包括识别、排序、授权、管理和控制项目、项目集和其他有关工作。项目组合管理重点关注的内容是:通过审核项目和项目集来确定资源分配的优先顺序,并确保对项目组合的管理与组织战略协调一致。

 

()项目组合管理的主要内容

项目组合管理包括4部分主要内容:

Part 1:识别、评价和归类项目组合

系统地识别和评价单个项目,并对项目、资源等进行分级,同时提供直观的战略计划。

 

Part 2:全面管理资源

最优化管理资源,最大限度的利用资源(包括内部资源、外购资源等)。

 

Part 3:集中管理需求

收集所有组合子项目的需求,并分类和排序,按价值等优先级别将资源分配给对应项目。

 

Part 4:动态调整

组织可以根据企业战略、业务战略、外部环境等的变化,动态调整组合子项目的管理,如:优先级、资源分配等。

 

可参照如下图示:

              01  项目组合管理的主要内容

 85849_201005061111121.jpg

 

(三)项目组合管理的“三要素”

  项目组合管理离不开“三要素”:人、流程、工具。实施项目组合管理,需要高层领导的大力支持、员工的积极配合,还要有出色的项目组合管理实施人员。另外,项目组合管理也需要制定明确的流程并切实执行。同时,项目组合管理需要工具的支持,以便更准确地跟踪项目,让管理人员和客户及时了解项目状态。这三部分是相辅相成、不可或缺。

fj.pngPortfolios PM.JPG

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/85849/viewspace-662023/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/85849/viewspace-662023/

【超级棒的算法改进】融合鱼鹰和柯西变异的麻雀优化算法研究(Matlab代码实现)内容概要:本文介绍了一种融合鱼鹰优化算法(BKA)和柯西变异策略的改进型麻雀搜索算法(SSA),旨在提升传统麻雀算法在全局搜索能力、收敛速度和避免陷入局部最优方面的性能。通过引入鱼鹰算法的捕食行为机制增强种群多样性,并结合柯西变异提高算法跳出局部极值的能力,从而构建出一种更为高效的混合优化算法OCSSA。该算法被成功应用于多个工程优化场景,如神经网络参数优化、微电网多目标调度、储能系统选址定容以及轴承故障诊断等领域,实验结果表明其在寻优精度和稳定性方面均优于多种经典和先进优化算法。此外,文中还配套提供了完整的Matlab代码实现,便于读者复现与扩展应用。; 适合人群:具备一定编程基础和优化算法背景,从事智能优化、机器学习、电力系统、信号处理等相关领域研究的研究生、科研人员及工程技术人员;熟悉Matlab语言并希望将智能算法应用于实际问题求解的开发者。; 使用场景及目标:①解决复杂非线性优化问题,如函数优化、参数调优、多目标调度等;②提升现有智能算法的搜索效率与鲁棒性,特别是在高维、多峰、约束优化问题中;③应用于神经网络训练、故障诊断、能源系统优化等实际工程项目中,实现更高精度的建模与预测。; 阅读建议:建议读者结合提供的Mat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值