矩阵变换
由 Rn R n 到 Rm R m 的一个变换(或称函数,映射) T T 是一个规则,它把中每个向量 x x 对应以中的一个向量 T(x) T ( x ) .集 Rn R n 称为 T T 的定义域,而称为 T T 的余定义域(或取值空间).符号说明% T T 的定义域是而余定义域是 Rm R m ,对于 Rn R n 中向量 x x ,中的向量 T(x) T ( x ) 称为 x x (在作用下)的像.所有像 T(x) T ( x ) 的集合称为 T T 的值域.
对中每个 x x ,由 Ax A x 计算得到,其中A是 m∗n m ∗ n 矩阵,记做 x−>Ax x − > A x ,注意当 A A 有列时, T T 的定义域为,而当 A A 的每个列有个元素时, T T 的余定义域为. T T 的值域为的列的所有线性组合的集合.