TensorFlow tf.keras.losses.MeanSquaredError

本文深入探讨了均方误差(MSE)的概念及其在机器学习中的应用。通过实例演示了如何使用TensorFlow的keras库计算MSE,并展示了具体的损失函数计算过程。MSE作为评估预测模型准确性的重要指标,其理解对于优化模型至关重要。
摘要由CSDN通过智能技术生成

均方误差(mean-square error, MSE)

mse = tf.keras.losses.MeanSquaredError()
loss = mse([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Loss: ', loss.numpy())  # Loss: 0.75

init

__init__(
    reduction=losses_utils.ReductionV2.AUTO,
    name='mean_squared_error'
)

call

__call__(
    y_true,
    y_pred,
    sample_weight=None
)

参考:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值