The Maze runner(BFS)

【题目描述】

Given a maze, find a shortest path from start to exit.


Input consists serveral test cases.
First line of the input contains number of test case T.
For each test case the first line contains two integers N , M ( 1 <= N, M <= 100 ).
Each of the following N lines contain M characters. Each character means a cell of the map.
Here is the definition for chracter.

Constraint:
A map consists of 4 kinds of characters:
‘S’ means the start point;
‘E’ means the exit point;
‘.’ means the opened-block that you can pass;
‘#’ means the closed-block that you cannot pass;

Requirements:
It is ONLY allowed to move by one step vertically or horizontally( up, down , left or right) to the next block;
You MUST NOT get out of the map;
Return -1 if given arguments can not satisfy the above requirements or you cannot find a way from ‘S’ to ‘E’.


For each test case print one line containing shortest path. If there exists no path from start to goal, print -1.

【数据样例】

4
4 4
####
#S##
#.E#
####
6 5
#####
#.S.#
#.#.#
#..##
##.E#
#####
4 4
####
#S##
##E#
####
6 8
########
#.....##
#.##...#
#..#.#.#
#S#..E.#
########


2
6
-1
10


【我的程序】

#include <iostream>
#define arraySize 102
#define queueSize 10002
using namespace std;

int n,m;

int add_x[4]={0,1,0,-1};
int add_y[4]={1,0,-1,0};

int queueStart,queueEnd;
int queue_x[queueSize], queue_y[queueSize];

int visited[arraySize][arraySize];
int value[arraySize][arraySize];

char a[arraySize][arraySize];

int boundCheck(int x, int y)
{
    if (x<=n && x>0 && y<=m && y>0) return 1; else return 0;
}

void jouer()
{
    int x,y,x_neigh,y_neigh;
    char ch;

    cin >>n >>m;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
    {
        cin >>ch;
        switch (ch)
        {
            case '.': value[i][j]=0; visited[i][j]=0; break;
            case '#': value[i][j]=-1; visited[i][j]=1; break;
            case 'S': queue_x[1]=i; queue_y[1]=j; value[i][j]=0; visited[i][j]=1; break;
            case 'E': value[i][j]=-1; visited[i][j]=0; break;
        }
        a[i][j]=ch;
    }

    queueStart=1; queueEnd=1;
    while (queueStart<=queueEnd)
    {
        x=queue_x[queueStart];
        y=queue_y[queueStart];
        queueStart++;

        for (int i=0;i<4;i++)
        {
            x_neigh=x+add_x[i];
            y_neigh=y+add_y[i];
            if (boundCheck(x_neigh,y_neigh) && visited[x_neigh][y_neigh]==0)
            {
                value[x_neigh][y_neigh]=value[x][y]+1;
                visited[x_neigh][y_neigh]=1;

                if (a[x_neigh][y_neigh]=='E') { cout <<value[x_neigh][y_neigh] <<endl; return;}

                queueEnd++;
                queue_x[queueEnd]=x_neigh; queue_y[queueEnd]=y_neigh;
            }
        }
    }

    cout <<-1 <<endl; return;
}

int main()
{
    int caseNum;
    cin >>caseNum;
    for (int i=0; i<caseNum; i++) jouer();
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是对DFS、BFS和UCS的介绍: DFS(深度优先搜索):总是扩展最深层的节点,使用的是LIFO队列,即使用的是stack栈。DFS在生成节点时做的goal test,因此在搜索树中,DFS总是沿着最深的路径搜索,直到找到目标状态或者无法继续搜索为止。DFS的优点是空间复杂度低,但是可能会陷入局部最优解。 BFS(广度优先搜索):总是扩展最浅层的节点,使用的是FIFO队列,即使用的是queue队列。BFS在扩展节点时做的goal test,因此在搜索树中,BFS总是沿着最浅的路径搜索,直到找到目标状态或者无法继续搜索为止。BFS的优点是可以找到最优解,但是空间复杂度较高。 UCS(最佳优先搜索):总是扩展当前代价最小的节点,使用的是priority queue优先队列。UCS在扩展节点时做的goal test,因此在搜索树中,UCS总是沿着代价最小的路径搜索,直到找到目标状态或者无法继续搜索为止。UCS的优点是可以找到最优解,且可以在frontier集中记录所有合适的解,但是空间复杂度较高。 以下是对DFS、BFS和UCS的演示: 假设我们要在一个迷宫中找到从起点到终点的最短路径,其中1表示墙,0表示可以通过的路。迷宫如下所示: ``` 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 ``` 我们可以使用DFS、BFS和UCS来寻找最短路径。其中DFS使用stack栈,BFS使用queue队列,UCS使用priority queue优先队列。具体实现可以参考以下代码: ```python # DFS def dfs(maze, start, end): stack = [(start, [start])] visited = set() while stack: node, path = stack.pop() if node == end: return path if node not in visited: visited.add(node) for neighbor in get_neighbors(maze, node): stack.append((neighbor, path + [neighbor])) return None # BFS def bfs(maze, start, end): queue = [(start, [start])] visited = set() while queue: node, path = queue.pop(0) if node == end: return path if node not in visited: visited.add(node) for neighbor in get_neighbors(maze, node): queue.append((neighbor, path + [neighbor])) return None # UCS def ucs(maze, start, end): queue = [(0, start, [start])] visited = set() while queue: cost, node, path = heapq.heappop(queue) if node == end: return path if node not in visited: visited.add(node) for neighbor in get_neighbors(maze, node): new_cost = cost + 1 heapq.heappush(queue, (new_cost, neighbor, path + [neighbor])) return None # 获取邻居节点 def get_neighbors(maze, node): neighbors = [] row, col = node if row > 0 and maze[row-1][col] == 0: neighbors.append((row-1, col)) if row < len(maze)-1 and maze[row+1][col] == 0: neighbors.append((row+1, col)) if col > 0 and maze[row][col-1] == 0: neighbors.append((row, col-1)) if col < len(maze[0])-1 and maze[row][col+1] == 0: neighbors.append((row, col+1)) return neighbors ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薄帷清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值