cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、Google Cloud自然语言处理及相关API使用指南
本文详细介绍了Google Cloud提供的多种自然语言处理及相关API的使用方法,包括NLP API文本分析、Speech-to-Text音频转文本、Text-to-Speech文本转语音、Translation API多语言翻译以及Dialogflow构建聊天机器人。通过具体操作步骤和实际应用案例,帮助开发者快速掌握如何利用这些工具创建智能化的应用程序,并提供了常见问题的解决建议及注意事项。原创 2025-07-15 16:32:59 · 136 阅读 · 0 评论 -
16、谷歌云Vertex AI与ML API实践指南
本博客详细介绍了Google Cloud Vertex AI与ML API的实践指南,涵盖批量预测、Workbench环境配置、特征存储、机器学习管道自动化、模型监控以及Vision API的应用。通过实际操作步骤和示例代码,帮助开发者更好地利用Google Cloud的机器学习服务,提高开发效率与模型性能。原创 2025-07-14 12:16:13 · 137 阅读 · 0 评论 -
15、使用Scikit - Learn和Google Vertex AI进行机器学习实践
本文详细介绍了如何使用Scikit-Learn进行回归和分类模型的构建,包括简单线性回归、多元线性回归、多项式回归以及逻辑回归的应用步骤。同时,还讲解了Google Vertex AI平台的操作流程,涵盖数据集创建、数据标注、模型训练、模型部署与预测等关键环节。通过方法总结、技术点分析和未来应用展望,帮助读者全面了解这两个工具在机器学习项目中的实际应用价值。原创 2025-07-13 12:29:27 · 54 阅读 · 0 评论 -
14、Python数据处理与可视化库的实用指南
本文详细介绍了Python中常用的数据处理与可视化库,包括NumPy、Pandas、Matplotlib和Seaborn,并展示了它们在数据分析中的实际应用。此外,还涵盖了Scikit-Learn库在机器学习数据准备和模型训练中的使用。通过这些库的协同工作,可以高效完成从数据处理到可视化再到机器学习建模的全过程,适用于各类数据科学项目。原创 2025-07-12 13:32:07 · 49 阅读 · 0 评论 -
13、Google Cloud机器学习实践:从基础服务到Python库应用
本博客介绍了Google Cloud机器学习实践,涵盖从基础GCP服务配置到Python数据科学库的应用。内容包括使用Google Cloud控制台和Cloud Shell创建项目、VPC网络、虚拟机、存储桶及VPC对等连接,并深入讲解了NumPy、Pandas、Matplotlib和Seaborn等Python库在数据处理、分析与可视化中的实际应用,为后续的机器学习实践打下坚实基础。原创 2025-07-11 15:49:12 · 46 阅读 · 0 评论 -
12、Google Cloud ML最佳实践与认证备考指南
本博客详细介绍了Google Cloud ML的最佳实践,涵盖环境设置、数据存储与处理、模型训练与部署、工作流编排以及持续监控等关键环节。同时,为准备Google Cloud专业ML工程师认证考试,提供了30道典型实践问题及其分析,帮助读者深入掌握相关知识和技能,提升实际应用能力。原创 2025-07-10 13:33:20 · 144 阅读 · 0 评论 -
11、探索谷歌云Vertex AI与ML API
本文详细介绍了谷歌云Vertex AI和ML API的功能与应用。Vertex AI提供了从模型开发、元数据管理到实验可视化的完整工具链,帮助开发者高效构建和部署机器学习模型。而ML API则涵盖了视觉、语言和对话三大领域,通过预训练模型快速集成图像识别、自然语言处理和语音交互等能力。文章还提供了实践建议和学习资源,助力开发者深入掌握谷歌云的机器学习服务。原创 2025-07-09 11:43:22 · 80 阅读 · 0 评论 -
10、机器学习框架:TensorFlow、Keras与Google Cloud Vertex AI全解析
本文全面解析了TensorFlow、Keras与Google Cloud Vertex AI在机器学习中的应用。从TensorFlow的核心概念如张量、形状和张量流动,到Keras的模型构建方式,再到Google Cloud Vertex AI提供的数据管理、模型训练、部署与预测的一站式服务。文章还通过mermaid流程图展示了各组件之间的关系,结合实际应用场景如图像识别和自然语言处理,详细介绍了工作流程,并提供了性能优化建议。最终总结了这些工具如何为不同层次的开发者提供强大的机器学习支持,并展望了未来的技原创 2025-07-08 11:10:00 · 69 阅读 · 0 评论 -
9、理解神经网络、深度学习及谷歌云机器学习工具
本文介绍了神经网络和深度学习的基础知识,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和生成对抗网络(GAN)等核心模型。同时详细讲解了谷歌云平台提供的机器学习工具,如BigQuery、BigQuery ML、TensorFlow和Keras的使用方法,并通过图像识别和自然语言处理的实际案例展示其应用。最后展望了神经网络和谷歌云工具未来的发展趋势,为读者提供了一个全面的技术概览和实践指南。原创 2025-07-07 10:22:47 · 53 阅读 · 0 评论 -
8、机器学习模型开发、部署与深度学习基础
本文详细介绍了机器学习模型开发与部署的基本流程,包括超参数调优、模型测试与部署方式。同时深入探讨了深度学习的基础知识,如神经网络的结构原理、成本函数的选择、优化器算法和常用激活函数。还介绍了卷积神经网络(CNN)及其他常见神经网络模型(如RNN、LSTM和GAN)的工作原理及其在图像识别、自然语言处理和生成任务中的应用。旨在帮助读者掌握机器学习和深度学习的核心概念与实践方法。原创 2025-07-06 15:58:26 · 37 阅读 · 0 评论 -
7、机器学习模型开发、部署与评估全解析
本博客全面解析了机器学习模型的开发、部署与评估过程,涵盖了从基础的回归和分类算法到高级模型以及验证调优方法。内容包括线性回归到非线性回归的扩展、二元与多类别分类问题、支持向量机、决策树和随机森林的应用、模型性能评估指标(如混淆矩阵、ROC曲线和AUC),以及应对过拟合和欠拟合的方法(如正则化和早停法)。通过这些技术,旨在提升模型的预测能力和实际应用效果。原创 2025-07-05 16:32:27 · 51 阅读 · 0 评论 -
6、机器学习开发全流程指南
本文详细介绍了机器学习开发的全流程,涵盖数据工程、特征工程、模型开发准备、模型训练、模型验证与调优、模型测试与部署等关键步骤。通过系统化的讲解,帮助读者全面了解如何构建和优化机器学习模型,以解决实际业务问题。原创 2025-07-04 10:00:26 · 40 阅读 · 0 评论 -
5、Python数据处理与机器学习准备全解析
本文深入解析了Python中常用的数据处理与机器学习准备步骤,介绍了NumPy、Pandas、Matplotlib和Seaborn等关键库的功能,并探讨了从业务需求分析到机器学习问题定义的全过程。内容涵盖机器学习问题分类、模型输入输出、性能评估、数据准备及转换、特征工程等多个方面,为读者提供了全面的机器学习实践指南。原创 2025-07-03 10:44:31 · 47 阅读 · 0 评论 -
4、谷歌云服务与Python编程入门
本博客介绍了谷歌云平台提供的多种机器学习服务,包括Google BQML、Vertex AI和谷歌云机器学习API,并结合Python编程语言,讲解了从基础语法到数据处理与可视化的全过程。通过实例演示,帮助读者掌握使用Python解决实际问题的技巧,并推荐了多个常用库的应用。博客旨在为初学者提供一条清晰的学习路径,将云计算资源与编程技能结合,助力机器学习与数据分析实践。原创 2025-07-02 14:02:14 · 56 阅读 · 0 评论 -
3、Google Cloud Platform(GCP)服务全解析
本博客全面解析了Google Cloud Platform(GCP)的核心服务,涵盖身份与访问管理、审计与计费、服务账户等基础安全机制,并深入探讨了GCP计算、存储、数据库以及大数据和分析服务。内容涉及Compute Engine虚拟机、负载均衡与实例组、容器服务Kubernetes Engine、无服务器平台Cloud Run与Cloud Functions,同时介绍了对象存储、关系型与非关系型数据库服务如Cloud Storage、Cloud SQL、Cloud Spanner及Bigtable。此外,原创 2025-07-01 12:29:42 · 107 阅读 · 0 评论 -
2、谷歌云平台(GCP)入门指南
本博客详细介绍了谷歌云平台(GCP)的全球基础设施、核心服务和使用方法,涵盖从账户创建、资源配置到高级服务如大数据分析和人工智能的应用。内容包括GCP的计算频谱、存储方案、数据库服务、身份访问管理以及最佳实践建议,旨在帮助用户全面了解并快速上手GCP云服务。原创 2025-06-30 10:30:43 · 209 阅读 · 0 评论 -
1、踏上谷歌云机器学习工程师之旅
本文详细介绍了成为谷歌云机器学习工程师的学习之旅,涵盖了技术背景与发展趋势、谷歌在技术领域的地位、学习目标与适用人群、学习内容概述以及实践建议等多个方面。重点解析了人工智能(AI)、大数据和云计算的相互关系,并深入探讨了如何利用谷歌云平台(GCP)进行机器学习开发、模型部署及深度学习应用。同时,提供了丰富的学习资源、代码示例和认证备考指导,适合希望成为专业谷歌认证云ML工程师的学习者系统学习和实践操作。原创 2025-06-29 09:46:27 · 102 阅读 · 0 评论
分享