cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
28、河谷工程蓄水水库基岩原位应力估算方法
本文介绍了液压破碎法在河谷工程蓄水水库基岩原位应力估算中的应用。该方法通过跨式封隔器对钻孔岩段加压,利用破裂压力、关井压力和裂缝重新开启压力计算最小和最大水平主应力,为水库设计提供关键数据支持。文章详细阐述了其原理、观测与计算方法,并结合特里大坝、塔拉水电站及戈万德大坝等实际案例分析了不同地质条件下的适用性。同时讨论了该技术在硬岩中的优势及其在软弱岩石中的局限性,提出了在规划、施工和运营阶段的应用流程。最后总结了液压破碎法的操作简便、快速高效等优点,并展望了其在未来多方法融合和技术改进中的发展潜力。原创 2025-10-20 08:02:28 · 31 阅读 · 0 评论 -
27、指数 - 林德利风险变点模型的参数估计
本文提出了一种新的混合风险变点模型——指数-林德利风险模型,适用于寿命数据在变点前具有恒定失效率、变点后风险率上升的情形。通过引入变点τ,模型在前后分别采用指数分布和林德利分布刻画风险函数,并利用轮廓极大似然估计法对参数λ、θ和τ进行估计。通过模拟研究验证了估计方法在不同样本量和删失比例下的有效性,结果显示随着样本量增加,估计精度显著提高。最后将模型应用于口腔癌和航空系统故障实际数据,结果表明所提模型在拟合优度上优于传统指数和林德利模型,尤其在K-S统计量和L1/L2范数等指标上表现更优。原创 2025-10-19 13:38:23 · 27 阅读 · 0 评论 -
26、爱因斯坦纯辐射场方程守恒定律与时空分数阶三场Kaup - Boussinesq方程的不变性分析
本文研究了爱因斯坦纯辐射场方程的守恒定律与时空分数阶三场Kaup-Boussinesq方程的不变性分析。针对爱因斯坦方程,通过引入伴随变量和拉格朗日量,结合Ibragimov方法,构建了六个向量场对应的守恒向量。对于时空分数阶Kaup-Boussinesq方程,采用Riemann-Liouville分数导数和Lie对称方法,求得无穷小量,并利用Erdélyi-Kober分数微分算子将原系统约化为常微分方程系统,为求解和分析该类非线性分数阶方程提供了有效途径。研究融合了现代数学物理中的多种工具,展示了对称性与原创 2025-10-18 10:18:37 · 36 阅读 · 0 评论 -
25、苯并呋喃 - 3(2H) - 酮衍生物与爱因斯坦场方程的研究进展
本博文综述了苯并呋喃-3(2H)-酮衍生物的合成、体外抗癌活性及分子对接研究进展,结果显示化合物3a和3c对乳腺癌细胞系MCF-7和MDA-MB-231表现出优于阿霉素的抗增殖活性,构效关系表明引入烷基链、卤素或硝基芳基可增强活性。同时,研究利用Noether定理和乘数法求解爱因斯坦场方程纯辐射场的守恒定律,获得了相应的乘数与守恒向量,为理解其可积性与物理性质提供了理论基础。未来展望包括结构优化、体内实验及在天体物理等领域的拓展应用。原创 2025-10-17 16:40:01 · 31 阅读 · 0 评论 -
24、利用基于风电+光伏的分布式发电在联营电力市场中节省燃料成本
本文研究了基于风电和光伏的分布式发电(PV-WT型DG)在联营电力市场中对燃料成本的节省效果。通过混合整数非线性规划(MINLP)方法,在IEEE 24节点系统上分析了恒定负载与ZIP负载两种情况下的最优DG配置。结果表明,引入PV-WT型DG可有效降低燃料成本、功率损耗和节点电价,其中ZIP负载下配置两个DG时综合成本最低,节能效果最优。文章还提出了未来在负载特性、DG技术创新和市场机制优化方面的研究方向,并给出了实际应用的操作步骤,为实现清洁、高效、可持续的电力系统提供了可行路径。原创 2025-10-16 11:42:12 · 24 阅读 · 0 评论 -
23、基于粒子群优化算法的帕金森病基底神经节外苍白球放电模式优化
本研究针对帕金森病灵长类动物的外苍白球(GPe)放电模式,提出基于粒子群优化算法(PSO)的参数优化方法。通过构建基于电导的单神经元模型,分析了放电模式对膜电容(Cm)、外部苍白球电流(IGPe)、钠膜电位(VNa)和钾膜电位(VK)的敏感性,并利用PSO算法对这些关键参数进行优化。优化后参数使帕金森病模型的放电模式与健康状态高度相似,相关系数达0.9918,验证了方法的有效性。这是首次将PSO应用于外苍白球模型的放电模式优化,为帕金森病的深部脑刺激治疗提供了理论支持和优化路径。原创 2025-10-15 16:36:35 · 23 阅读 · 0 评论 -
22、血液流动与散热鳍片的研究
本博文深入研究了血液流动与散热鳍片的物理机制及其在医学和工程领域的应用。在血液流动方面,采用牛顿、Carreau和幂律模型分析了脉动流中低密度脂蛋白(LDL)在心动周期开始时易于在血管壁积聚的现象,为心血管疾病的预防提供了理论依据。在散热鳍片研究中,对比了不同材料(铜、铝、铁、不锈钢)和形状(圆形、环形、矩形、三角形)鳍片在多种边界条件下的热传递性能,结果表明铜制圆形鳍片具有最优的热传递效率。文章还探讨了研究的局限性,并展望未来可结合血管弹性与材料非均匀性进行多物理场耦合研究,提升模型实用性。研究成果对医学原创 2025-10-14 11:30:55 · 34 阅读 · 0 评论 -
21、狭窄动脉中牛顿和非牛顿方法的血流研究
本文研究了狭窄动脉中血液流动的牛顿与非牛顿建模方法,介绍了流体力学基本控制方程及常见非牛顿流体模型,如卡雷奥、幂律、卡森等模型的特点与适用范围。通过在后向台阶通道中进行时变流动的数值模拟,对比了不同模型在非稳态和稳态条件下的出口速度分布差异,揭示了血液粘度随剪切率变化对流动行为的重要影响。研究表明,在低剪切率或血管狭窄情况下,非牛顿模型更能准确描述血流特性。文章进一步分析了各模型的优缺点,并探讨了其在疾病诊断、治疗设计和生物医学工程中的应用价值,最后展望了多物理场耦合、个性化建模与实验验证等未来研究方向。原创 2025-10-13 09:37:52 · 37 阅读 · 0 评论 -
20、含时变系数的广义七阶KdV方程的显式精确解与守恒律
本文研究了含时变系数的广义七阶KdV方程,利用对称群方法求得其无穷小对称和最优系统,并通过相似约化将原方程转化为常微分方程,进而获得多种显式精确解,包括幂级数解和雅可比椭圆函数解,在特定极限下可退化为暗孤子解。同时,采用直接方法结合乘数法构造了方程的守恒律,给出了不同约束条件下的守恒向量。研究结果有助于理解高阶非线性波方程的结构与物理特性,对方程在浅水波、内波和等离子体物理等领域的应用提供了理论支持。原创 2025-10-12 11:00:30 · 47 阅读 · 0 评论 -
19、纳米流体外速度与传热分析及(2 + 1)维广义Hirota - Satsuma - Ito方程解析解
本文研究了纳米流体在拉伸圆柱上的流动与传热特性,分析了参数λ、γ、M、σ、Nt和Nb对速度分布、温度场及纳米颗粒浓度的影响,并采用MATLAB RKF方法求解相关方程。同时,针对(2+1)维广义Hirota-Satsuma-Ito(gHSI)方程,利用Hirota双线性方法推导其双线性形式,结合新颖测试函数和Maple求解,获得了三种非平凡解析解。通过图形展示了解的动态行为,揭示了其在等离子体物理与流体动力学中的潜在应用价值。研究结果对能源、电子散热等领域具有理论指导意义。原创 2025-10-11 15:30:59 · 28 阅读 · 0 评论 -
18、脑癌肿瘤生长与纳米流体流动传热的数学模型分析
本文研究了脑癌肿瘤生长和纳米流体绕拉伸圆柱的流动与传热两个方向的数学模型。在肿瘤生长模型中,采用时间分数阶微分方程结合简化微分变换方法求得精确解,并通过图形化分析展示肿瘤细胞浓度随时间的变化趋势;在纳米流体模型中,通过相似变换将控制方程简化,并利用RKF方法结合打靶法进行数值求解,系统分析了曲率、磁场、布朗运动、热泳、滑移和外部速度等参数对速度、温度和浓度分布的影响。研究还探讨了两个模型在癌症治疗与工业传热中的应用潜力及跨领域结合的可能性,展望了数值模拟与机器学习等方法在未来研究中的拓展方向。原创 2025-10-10 10:09:14 · 40 阅读 · 0 评论 -
17、时间分数阶偏微分方程与脑癌肿瘤生长模型的数学分析
本文研究了时间分数阶五阶偏微分方程的Lie对称分析与显式幂级数解,并将其应用于脑癌肿瘤生长的数学建模。通过引入RL导数和相似变量变换,将原方程转化为分数阶常微分方程,并利用幂级数展开技术求得解析解。同时,构建了一个基于时间分数阶扩散方程的脑癌肿瘤模型,采用降阶微分变换方法(RDTM)进行求解,展示了该方法在处理非线性生物系统中的高效性与精确性。结合伽马函数、Caputo导数和Mittag-Leffler函数等分数阶微积分工具,深入探讨了解的物理意义及参数α对动态行为的影响。研究结果为复杂生物系统的建模与分析原创 2025-10-09 15:39:49 · 28 阅读 · 0 评论 -
16、磁流体与分数阶KdV方程的研究
本文研究了Casson流体在拉伸板上的磁流体动力学特性,分析了外速度、磁场参数和夹角对速度与温度分布的影响规律;同时探讨了一般时间分数阶五阶Korteweg-de-Vries方程的求解方法,采用Lie对称分析将原方程转化为非线性分数阶常微分方程,并结合Erdelyi-Kober算子和幂级数解法获得显式解。研究成果为磁流体工程应用及复杂物理现象的分数阶建模提供了理论支持。原创 2025-10-08 16:00:34 · 31 阅读 · 0 评论 -
15、分数阶系统与磁流体动力学研究进展
本文研究了分数阶双哈密顿-布辛涅斯克系统的残差幂级数解,并探讨了倾斜外速度下对齐与非对齐磁流体动力学(MHD)中卡森流体在拉伸板上的流动与传热特性。采用RPSM方法求解分数阶系统,验证了其收敛性与高精度;针对MHD问题,建立了二维稳态不可压缩模型,利用无量纲变换和数值方法分析了卡森参数、磁参数及对齐角度等对速度和温度分布的影响,揭示了不同外速度条件下边界层行为的变化规律,为相关工程应用提供了理论依据。原创 2025-10-07 15:37:01 · 27 阅读 · 0 评论 -
14、非线性偏微分方程的行波解与分岔分析及分数阶双哈密顿型Boussinesq系统的残数幂级数解
本文研究了非线性偏微分方程中的Chaffee–Infante方程的行波解与分岔特性,并探讨了分数阶双哈密顿型Boussinesq系统的解析近似解。采用第一积分法求得Chaffee–Infante方程的精确行波解,并通过相图分析其动力学行为;对于分数阶系统,基于Riemann–Liouville导数和分数幂级数理论,应用残数幂级数法(RPSM)构造了解析近似解,给出了初始条件下的一阶和二阶近似解的详细推导过程。研究表明,这些方法能有效处理非线性与分数阶耦合系统,为相关物理现象的建模与分析提供了有力工具。原创 2025-10-06 15:08:40 · 32 阅读 · 0 评论 -
13、不变性分析、对称约化、守恒定律及分数阶模型求解方法
本文系统探讨了巴克马斯特方程的不变性分析与守恒定律,通过向量场和特征函数推导出相应的守恒通量,并构建最优子代数进行对称约化。同时,介绍了阿多米安分解-马古布变换方法(ADMTT)在分数阶福克-普朗克方程和薛定谔方程中的应用,展示了该方法求解分数阶微分方程的有效性。最后对比了两种方法的特点,提出了综合应用流程与未来研究方向,为非线性与分数阶系统的分析提供了理论支持与技术路径。原创 2025-10-05 16:13:27 · 29 阅读 · 0 评论 -
12、脉冲半线性分数阶发展方程的温和解与非线性Buckmaster模型的不变分析
本文研究了脉冲半线性分数阶发展方程的温和解存在性与非线性Buckmaster模型的不变性分析。针对脉冲方程,通过定义算子族和构造不动点问题,结合Krasnoselkii定理证明了解的存在性,并给出具体应用实例验证理论结果;对于Buckmaster模型,采用古典与非古典对称方法进行分析,得到无穷小对称生成元与向量场,通过相似性约化将原方程转化为常微分方程,并利用乘数法和新守恒定理构造守恒律。研究成果为相关数学模型的理论分析与求解提供了重要基础。原创 2025-10-04 10:15:33 · 25 阅读 · 0 评论 -
11、通用选修课分配与脉冲半线性分数阶发展方程的研究
本文探讨了通用选修课(GEC)分配系统与脉冲半线性分数阶发展方程的理论与应用。在教育管理方面,提出基于MySQL和排序算法的GEC分配模型,通过案例分析展示了新模型在公平性和效率上的优势;在数学研究方面,研究了具有脉冲条件的半线性分数阶发展方程,利用解析算子函数和不动点技术证明其温和解的存在性。两者分别在教育优化与复杂动态系统建模中展现出重要价值,具有广泛的应用前景和理论意义。原创 2025-10-03 12:00:43 · 22 阅读 · 0 评论 -
10、基于熵权的扩展 VIKOR - TODIM 方法及通用选修课分配算法
本文提出了一种基于熵权的扩展VIKOR-TODIM多准则决策方法,结合新的直觉模糊集信息度量公式,有效处理不确定性环境下的决策问题。通过引入直觉模糊数、归一化决策矩阵、TODIM优势度计算与VIKOR折衷解排序,提升了决策的合理性与鲁棒性。同时,设计了一种考虑学生成绩与课程偏好的通用选修课分配算法,相较于传统按成绩优先的分配方式,显著提高了学生满意度。文中通过数值示例与对比分析验证了所提方法的有效性,并展望了其在更广泛模糊环境与教育资源配置中的应用潜力。原创 2025-10-02 16:52:46 · 33 阅读 · 0 评论 -
9、基于人工神经网络与直觉模糊集的风速预测及多准则决策方法研究
本文研究了基于人工神经网络的风速预测方法与基于直觉模糊集的扩展VIKOR-TODIM多准则决策方法。在风速预测方面,采用BPANN和BBOANN模型,利用7年历史数据训练并以2011年数据验证,结果显示BBOANN平均MAPE为4.48%,优于传统方法;两种模型预测一周风速仅需2.8秒,具备高精度与高效性。在多准则决策方面,提出结合VIKOR与TODIM的新方法,引入直觉模糊集和新熵度量,用于处理不确定性下的决策问题,并在软件公司选择中验证其有效性。研究表明,两种方法在各自领域均表现出优越性能,具有广泛的应原创 2025-10-01 16:09:56 · 29 阅读 · 0 评论 -
8、基于生物地理学优化(BBO)训练的神经网络用于风速预测
本文提出了一种基于生物地理学优化(BBO)算法的前馈神经网络训练方法(BBOANN),并将其应用于风速预测。通过与传统BPANN及其他现有方法对比,实验结果表明BBOANN在预测准确性(MAPE、SSE、SDE指标更优)和收敛速度方面均具有显著优势。结合对立BBO技术进一步提升了性能,适用于风速等非线性时间序列预测问题,具有良好的应用前景。原创 2025-09-30 12:15:07 · 37 阅读 · 0 评论 -
7、四元数、八元数到十二元数流形:立体投影的奥秘
本文探讨了从四元数、八元数到十二元数的高维流形中立体投影的深层数学机制与应用。通过引入‘内部和上方’的维度构建协议,提出了一种超越传统正交扩展的新维度观,并将立体投影应用于几何音乐语言(GML)、无穷级数对称性分析及自操作系统设计中。文章详细阐述了在4到12维空间中的投影拓扑、反馈机制、摆线张量运算以及素数模式映射(PPM)如何共同构建动态几何系统。结合mermaid流程图与案例分析,展示了从音乐创作到类脑计算的潜在应用,并展望了其在跨学科领域的未来发展方向。原创 2025-09-29 10:31:27 · 34 阅读 · 0 评论 -
5、固定点迭代程序收敛速度研究与高维复数的新探索
本文研究了固定点迭代程序中MM、MN和MI迭代方案的收敛速度,通过交换迭代系数比较了不同形式的收敛性能,结果表明原迭代格式在多数情况下收敛更快。同时,文章引入了十二元数这一12维复数系统,探讨其独特的拓扑结构及其在物理领域的应用潜力,如黑洞动力学与量子态演化,并分析了其与几何代数、张量代数等现有数学体系的融合前景。研究为迭代优化和高维代数理论发展提供了新思路。原创 2025-09-27 11:54:09 · 40 阅读 · 0 评论 -
4、图像加密与固定点迭代方法的研究
本文研究了一种基于结构化相位掩码(SPM)和随机相位掩码(RPM)的非对称图像加密系统,适用于灰度和二值图像的安全保护。系统通过离散余弦变换(DCT)和分数傅里叶变换(FrFT)实现灵活加密,并利用MSE、PSNR、RE、直方图、熵及噪声攻击等多维度指标验证了其高效性与抗攻击能力。同时,探讨了固定点迭代方法中修改后的曼恩(MM)、努尔(MN)和石川(MI)迭代的收敛特性,结果显示MI迭代具有更快的收敛速度。文章总结了两类技术的优势与应用场景,并展望了未来在信息安全、医疗、军事及数值计算等领域的发展潜力。原创 2025-09-26 13:39:34 · 22 阅读 · 0 评论 -
3、分数系统的精确解、自伴性与守恒律及图像加密系统研究
本文研究了分数系统的精确解、自伴性与守恒律,通过Lie对称分析和Erdélyi–Kober分数算子将原系统转化为分数阶常微分方程,并利用幂级数方法求得精确解。同时验证了系统的非线性自伴性并构造了守恒律。在图像加密方面,提出了一种基于离散余弦变换(DCT)、分数傅里叶变换(FrFT)和结构化相位掩码(SPM)的非对称加密方案,提升了图像安全性和抗攻击能力。研究表明,分数微积分理论与现代图像加密技术在数学原理上具有深层联系,二者均可通过变换域方法实现复杂系统的建模与安全保障。原创 2025-09-25 09:43:39 · 24 阅读 · 0 评论 -
2、光学混沌相位图像加密系统与分数阶耦合KdV系统研究
本文研究了光学混沌相位图像加密系统与时间分数阶三耦合KdV系统的理论与应用。在图像加密方面,提出了一种基于随机振幅/相位掩模和洛伦兹映射的菲涅尔域加密方法,具备高安全性、强鲁棒性和优异的解密效果,可应用于军事、医疗和商业领域的图像保护。在非线性系统方面,针对时间分数阶三耦合KdV系统,采用幂级数展开和群分析方法求解精确级数解,并利用扩展Noether算子推导非平凡守恒定律,揭示其物理特性与系统稳定性。研究成果为信息安全与非线性动力学领域提供了有效的理论支持和技术路径。原创 2025-09-24 15:13:47 · 27 阅读 · 0 评论 -
1、计算与认知工程前沿:光学混沌加密系统解析
本文基于TCCE-2019会议研究成果,介绍了一种结合双随机相位编码(DRPE)与洛伦兹映射的菲涅尔域相位图像加密方案。该方案利用菲涅尔变换的多维特性与混沌系统的高敏感性,提升了光学加密系统的安全性和抗攻击能力。通过MATLAB仿真验证,系统在直方图均匀性、信息熵、参数敏感性及抗噪声遮挡方面表现优异,有效抵御统计攻击。同时,文章概述了计算与认知工程领域在数学建模、优化算法、神经网络及医学应用等方面的前沿进展,展现了跨学科融合的广阔前景。原创 2025-09-23 13:05:28 · 39 阅读 · 0 评论
分享