cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、基于 Wi-Fi 的人类步态识别技术解析
本文详细解析了基于 Wi-Fi 的人类步态识别技术 GaitID,其通过创新的 GBVP 特征提取方法和深度神经网络模型,解决了轨迹与速度变化带来的识别挑战,并利用迁移学习减少新用户的训练数据需求。实验表明,GaitID 在不同行走轨迹和速度下均具有良好的识别准确率与鲁棒性,具备在智能家居、安防监控和健康监测等场景中的广泛应用潜力。原创 2025-07-25 03:46:14 · 85 阅读 · 0 评论 -
22、Wi-Fi 助力:人体手势与步态识别的创新突破
本文探讨了基于Wi-Fi的人体手势识别和步态识别技术的最新进展,重点介绍了Widar3.0和GaitID系统在跨领域手势和步态识别中的创新突破。Widar3.0通过提取领域无关的BVP特征实现了零努力跨领域手势识别,而GaitID通过GBVP特征和迁移学习有效解决了传统步态识别对行走轨迹和速度的限制。文章还分析了技术优势、应用场景、面临的挑战以及未来发展趋势,展示了这些技术在智能家居、安防和医疗健康等领域的广泛应用前景。原创 2025-07-24 14:30:50 · 121 阅读 · 0 评论 -
21、Wi-Fi人体手势识别技术:Widar3.0的性能评估与应用潜力
本文介绍了基于Wi-Fi的非接触式手势识别系统Widar3.0的实现原理、性能评估及其应用潜力。通过利用Wi-Fi设备采集信道状态信息(CSI)并提取人体速度功率谱(BVP)作为核心特征,Widar3.0在多种室内环境中实现了高准确率的手势识别,并表现出良好的跨领域适应能力。文章详细讨论了系统架构、实验设置、数据集构建以及与其他现有技术的对比结果,同时展望了其在健康监测、安防监控和智能家居等领域的应用前景。原创 2025-07-23 12:32:33 · 183 阅读 · 0 评论 -
20、Wi-Fi 人体手势识别技术:Widar3.0 系统解析
Widar3.0 是一种基于 Wi-Fi 设备的跨域手势识别系统,通过引入身体坐标速度轮廓(BVP)这一与域无关的特征,结合 CSI 数据处理和深度神经网络,实现了高效准确的手势识别。文章详细解析了 Widar3.0 的系统架构、BVP 的生成原理、手势识别机制以及其技术优势与挑战,并展望了其在智能家居、VR/AR、医疗康复等场景的应用前景。原创 2025-07-22 13:02:31 · 139 阅读 · 0 评论 -
19、基于Wi-Fi的人体动作感知与手势识别技术
本博文探讨了基于Wi-Fi信号的人体动作感知与手势识别技术,重点介绍了WiDance和Widar3.0等系统的工作原理与性能表现。WiDance利用商用Wi-Fi设备提取多普勒频移,实现跳舞健身游戏中的动作识别,准确率达92%。Widar3.0则提出了一种全新的域无关特征——身体坐标速度轮廓(BVP),结合通用模型实现了无需额外训练的跨域手势识别,在多种环境下的平均准确率超过88%。文章还分析了Wi-Fi手势识别面临的问题,并展望了未来的技术改进与应用拓展方向。原创 2025-07-21 13:43:29 · 121 阅读 · 0 评论 -
18、Wi-Fi 技术在动作方向推断中的应用与评估
本博文介绍了WiDance系统,该系统利用Wi-Fi信号和多普勒频移来推断人体动作方向。通过两级分类方案,WiDance能够在不同环境中实现高准确率的动作识别,并具有广泛的应用潜力,如智能家居、虚拟现实和健康监测。此外,博文还讨论了WiDance的局限性,包括对多个移动对象的识别挑战、硬件依赖性以及检测范围的限制。原创 2025-07-20 12:28:50 · 42 阅读 · 0 评论 -
17、利用 Wi-Fi 推断运动方向
WiDance 是一种利用现成 Wi-Fi 设备实现的交互式健身游戏系统,通过捕捉和分析玩家运动引起的多普勒效应来识别动作方向。系统利用 CSI 数据,结合信号处理和分类技术,能够实时识别玩家的腿部运动方向,并提供反馈。该技术为非接触式运动识别提供了创新方案,具有较高的识别准确率和良好的实时性,适用于健身游戏以及其他潜在的应用领域。原创 2025-07-19 13:01:23 · 65 阅读 · 0 评论 -
16、无线传感技术:从人体跟踪到动作方向推断
本文深入探讨了无线传感技术在人体跟踪与动作识别领域的应用与发展,重点介绍了Widar2.0和WiDance系统的创新技术与优势。Widar2.0利用Wi-Fi链路实现亚米级被动跟踪,而WiDance通过多天线提取多普勒频移信息,实现无需训练的动作识别。文章还展望了无线传感技术在未来智能家居、医疗健康、安防及虚拟现实等领域的广泛应用前景。原创 2025-07-18 12:44:43 · 115 阅读 · 0 评论 -
15、单Wi-Fi链路实现分米级被动人体跟踪
本博文介绍了 Widar2.0,一种基于单 Wi-Fi 链路实现分米级被动人体跟踪的系统。通过路径匹配、距离细化和定位模型等关键技术,Widar2.0 在多种室内环境中实现了高精度的定位跟踪,并具有良好的鲁棒性和适应性。文章还讨论了其在智能家居和安防监控等场景中的应用潜力及未来发展方向。原创 2025-07-17 14:31:17 · 57 阅读 · 0 评论 -
14、单Wi-Fi链路实现分米级被动人体跟踪技术解析
本博文深入解析了一种基于单Wi-Fi链路的分米级被动人体跟踪技术。通过分析信道状态信息(CSI)中的运动参数,如飞行时间(ToF)、到达角(AoA)、多普勒频移(DFS)和衰减,结合新颖的统一CSI模型和高效的联合多参数估计算法,实现了在仅使用单链路的情况下对目标的高精度跟踪。针对商用Wi-Fi CSI测量中存在的噪声问题,提出了有效的CSI清理算法,同时引入基于图的路径匹配(GPM)算法,从复杂的多径信号中筛选出目标参数,并利用正交维度参数提升分辨率,最终通过单链路ToF和距离实现目标定位。该技术为室内定原创 2025-07-16 13:16:42 · 54 阅读 · 0 评论 -
13、Wi-Fi 技术助力:实现高精度被动人体追踪
本博文介绍了基于Wi-Fi技术的高精度被动人体追踪系统Widar和Widar2.0。Widar通过多Wi-Fi链路实现分米级定位,而Widar2.0则突破性地仅使用单Wi-Fi链路即可完成亚米级精度的人体定位与跟踪。系统利用到达角(AoA)、飞行时间(ToF)、多普勒频移(DFS)等多维参数,并提出创新的相位噪声消除方法,解决了传统方法部署复杂、成本高的问题。文章还展示了Widar2.0在智能家居、安全监控、零售分析等场景的应用前景,为未来智能感知技术的发展提供了新思路。原创 2025-07-15 09:57:50 · 153 阅读 · 0 评论 -
12、基于多Wi-Fi链路的分米级被动人体跟踪技术解析
本文介绍了一种基于多Wi-Fi链路的分米级被动人体跟踪技术。该技术利用Wi-Fi信号的CSI信息,通过交叉相关计算、运动检测、初始位置估计、连续跟踪和轨迹细化等步骤,实现了对人体速度和位置的高精度跟踪。文章详细解析了该技术的核心算法、实验方法及性能评估,并与其他跟踪方法进行了对比,展示了其在精度、适应性和实用性方面的显著优势。同时,也探讨了该技术面临的挑战及未来发展方向。原创 2025-07-14 13:02:22 · 65 阅读 · 0 评论 -
11、多Wi-Fi链路实现分米级被动人体跟踪
本文介绍了一种基于多Wi-Fi链路的分米级被动人体跟踪技术。通过分析信道状态信息(CSI)提取路径长度变化率(PLCR),结合速度和位置建模以及符号识别方法,实现了无需训练阶段、高精度的人体移动跟踪。文章详细探讨了技术原理、挑战及解决方案,并总结了其在智能家居、安防监控等领域的应用前景。原创 2025-07-13 10:36:27 · 47 阅读 · 0 评论 -
10、Wi-Fi 技术助力人体检测与跟踪:DeMan 与 Widar 系统解析
本文介绍了基于Wi-Fi技术的人体检测与跟踪系统DeMan和Widar的原理与应用。DeMan通过利用CSI的幅度和相位信息,能够同时检测移动和静止的人体,特别是在静止人体的呼吸监测方面表现出色。Widar则通过几何建模实现了分米级精度的人体速度和位置跟踪,突破了传统方法的局限性。文章探讨了两种系统的技术优势、面临的挑战以及未来发展方向,并分析了Wi-Fi人体检测与跟踪技术在智能家居、安全监控、室内健身和灾难救援等领域的广泛应用前景。原创 2025-07-12 10:42:29 · 92 阅读 · 0 评论 -
9、基于Wi-Fi的移动和静止人体被动检测技术解析
本文详细解析了一种基于Wi-Fi信道状态信息(CSI)的移动和静止人体被动检测技术。通过建模呼吸信号并利用正弦参数估计方法(如Nelder-Mead优化和LMS回归),结合频率分集与多天线信息,该技术能够在复杂环境中准确检测人体的呼吸和运动状态。实验表明,该方法在多种场景下均具有高真阳性率和真阴性率,具备良好的实用性与可靠性。原创 2025-07-11 14:33:03 · 57 阅读 · 0 评论 -
8、利用 Wi-Fi 被动检测移动和静止人体
本文介绍了一种名为 DeMan 的系统,该系统利用 Wi-Fi 信号的信道状态信息(CSI)实现对室内环境中移动和静止人体的被动检测。与传统基于接收信号强度指示(RSSI)的方法相比,CSI 在相位信息和频率多样性方面具有更细粒度的优势。DeMan 结合 CSI 的幅度和相位特征,设计了轻量级运动干扰指示器、移动目标检测和静止目标检测模块,无需针对特定场景进行预训练。移动目标检测通过计算 CSI 相关矩阵的特征值来识别运动人体,而静止目标检测则利用人类呼吸引起的信号变化进行判断。该系统在智能家居、安防监控等原创 2025-07-10 12:44:35 · 124 阅读 · 0 评论 -
7、Wi-Fi 技术在人体检测中的应用与创新
本博客探讨了Wi-Fi技术在人体检测中的创新应用,重点介绍了DeMan系统如何利用Wi-Fi的物理层信道状态信息(CSI)实现对移动和静止人体的被动检测。通过实验评估和系统设计分析,展示了DeMan系统在性能和适用性上的显著优势,并对比了其与相关研究领域的区别与突破。原创 2025-07-09 12:59:58 · 77 阅读 · 0 评论 -
6、利用Wi-Fi被动检测动态速度移动目标
本文介绍了一种基于Wi-Fi信号的被动检测动态速度移动目标的系统——PADS系统。该系统利用物理层信道状态信息(CSI)的幅度和相位特征,通过数据预处理、特征提取和运动检测等步骤,实现了对动态速度移动目标的高精度检测。与传统基于接收信号强度(RSS)的方法相比,PADS系统在不同场景下表现出更高的鲁棒性和准确性,具有广泛的应用前景,如智能家居、安防监控和智能办公等领域。原创 2025-07-08 13:18:55 · 62 阅读 · 0 评论 -
5、Wi-Fi 助力:被动检测移动目标的创新方案
本文介绍了一种基于Wi-Fi的被动检测移动目标的创新方案,探讨了Wi-Fi信号在不同方向和窗口大小下的检测性能,并提出了一种名为PADS的方案,利用信道状态信息(CSI)的幅度和相位信息实现对人体动态运动的准确检测。实验结果表明,该方案在多种场景下均表现出较高的检测准确率和较低的误报率,为无设备被动检测技术的发展提供了新的思路和方法。原创 2025-07-07 12:11:42 · 67 阅读 · 0 评论 -
4、基于Wi-Fi的被动人体检测技术解析
本文详细解析了基于Wi-Fi的被动人体检测技术,重点介绍了利用信道状态信息(CSI)和CFR幅度特征进行人体检测的原理和方法。通过指纹数据库和地球移动距离(EMD)分类算法,该技术实现了在不同室内场景下的高精度检测。文章还探讨了其技术优势、应用场景、面临的挑战以及未来的发展方向,为室内环境监测提供了一种可靠的技术方案。原创 2025-07-06 14:08:52 · 93 阅读 · 0 评论 -
3、无线信号相关技术:从信道状态信息到被动人体检测
本文深入探讨了无线信号相关技术,从信道状态信息(CSI)的理论基础到被动人体检测的实际应用。详细分析了CSI的协方差矩阵、MUSIC算法、多普勒频移等关键概念,并介绍了多种CSI数据收集工具及其特点。文章重点提出了全向被动人体检测(Omni-PHD)的概念和实施方案,利用PHY层特征和指纹识别技术,解决了传统基于RSSI的检测方案在全向覆盖和环境噪声抵抗方面的不足。通过实验验证,该方案在室内场景中表现出良好的检测准确性和方位区分能力,未来有望在智能空间、人机交互和资产安全等领域广泛应用。原创 2025-07-05 10:36:14 · 58 阅读 · 0 评论 -
2、无线传感中的CSI技术解析
本文详细解析了无线传感中的CSI(信道状态信息)技术,包括其在人体活动识别和手势识别中的应用。文章探讨了无线传感领域面临的挑战及解决办法,深入解析了CSI的定义、噪声和信号特征,并结合实际案例分析了CSI技术的应用效果。此外,文章还展望了CSI技术的发展趋势和未来研究方向。原创 2025-07-04 11:47:45 · 82 阅读 · 0 评论 -
1、无线传感技术:概念、应用与挑战
在人工智能物联网(AIoT)时代,无线传感技术因其无传感器、无线和非接触的特点,成为便捷且广泛应用潜力的环境感知工具。该技术通过利用环境中普遍存在的无线信号(如Wi-Fi、射频等),实现对环境和人体的被动式感知,在智能家居控制、安全监控、智能医疗等领域取得显著进展。尽管面临信号特征提取和环境干扰等挑战,研究人员通过引入机器学习、深度学习和系统优化等方法推动技术突破。未来,无线传感技术将朝着多模态融合、微型化集成化和跨领域应用拓展方向发展,为人们的生活带来更多便利和价值。原创 2025-07-03 16:26:48 · 106 阅读 · 0 评论
分享