cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
34、利用人工智能助推实现企业社会责任
本文探讨了人工智能如何通过助推机制促进企业社会责任(CSR)的实现。随着数字化和人工智能的发展,人机集体逐渐成为工作环境中的常态,推动管理范式从自动化向人类增强转变。文章提出强化以人为本的管理(AHCM)框架,强调利用人工智能弥补人类决策偏差,提升人类能力,并通过‘助推’帮助员工和管理者做出更理性、道德和可持续的选择。在经济、社会和环境责任方面,人工智能助推展现出巨大潜力,但也面临伦理、隐私、技术可靠性和社会接受度等挑战。为此,文章建议加强伦理监管、保障数据安全、提升算法透明度并加强公众教育。未来,人工智能原创 2025-09-30 04:11:28 · 39 阅读 · 0 评论 -
33、AI与领导力:管理任务与流程的自动化变革
本文探讨了人工智能与领导力在管理任务与流程自动化中的融合与变革。尽管当前对大脑运作机制的理解仍有限,复杂脑力任务的完全自动化尚难实现,但人工智能结合人类智慧已能在数据分析、决策支持和流程优化中创造显著价值。文章提出管理者应通过识别潜力、实施AI解决方案和制度化应用三步走策略,推动组织智能化转型。案例研究表明,AI可大幅提升信息处理效率,降低决策不确定性。未来,企业需加强认知提升、战略规划、数据管理、人才培养与变革管理,以实现AI赋能下的可持续竞争优势。原创 2025-09-29 09:05:25 · 34 阅读 · 0 评论 -
32、人工智能与企业管理:融合、挑战与机遇
本文探讨了人工智能与企业管理的融合,分析了拉丁美洲AI政策协调的潜在论坛,阐述了AI与人类智能在企业中的协同作用。文章强调AI可提升数据处理能力和决策效率,但战略决策仍依赖人类智慧。通过案例展示AI在企业持续环境分析中的应用流程,指出AI与人类智能结合是未来企业保持竞争力的关键路径。原创 2025-09-28 10:27:22 · 35 阅读 · 0 评论 -
31、企业社会责任与人工智能融合的协同行动
本文探讨了企业社会责任(CSR)与人工智能(AI)融合的协同路径,提出以AI伦理和联合国可持续发展目标(SDGs)为基准的三级思维框架,涵盖新AI、应用AI和潜在AI三个层面。通过拉丁美洲四个AI4SDGs项目的案例分析,揭示了项目扩展、合作机制及面临的资源与政策挑战。文章强调商业领导者需采用系统性思维,结合伦理与可持续性评估AI影响,并呼吁加强AI监管与区域政策协调,以促进可持续创新。最后,展望了未来CSR与AI在多领域的深度融合趋势,指出国际合作、技术创新与利益相关者参与是推动该进程的关键策略。原创 2025-09-27 16:20:15 · 51 阅读 · 0 评论 -
30、对抗性聊天机器人与企业AI社会责任的融合探索
本文探讨了对抗性聊天机器人在技术设计与教育实践中的伦理挑战,强调将社会责任融入人工智能开发的重要性。通过课程案例分析学生对不道德聊天机器人的反思,揭示了技术教育中培养伦理意识的必要性。同时提出企业领导者应采用三级思维框架,将企业社会责任(CSR)与AI应用整合,并呼吁公共政策通过监管激励和区域协调推动AI向善发展。文章主张从研发早期阶段纳入伦理考量,以实现真正负责任的人工智能。原创 2025-09-26 16:29:44 · 31 阅读 · 0 评论 -
29、对抗性聊天机器人:人工智能伦理教育的新途径
本文探讨了通过‘创建最不道德的聊天机器人’这一创新教学方法,开展人工智能伦理与负责任创新教育的实践。课程结合电影评论、阅读反思、专家交流与自我民族志研究,引导学生在批判性思维中理解AI的社会影响。学生项目揭示了多种不道德设计场景,最终共同制定出道德聊天机器人设计指南,为AI伦理教育提供了可推广的教学范式。原创 2025-09-25 16:36:50 · 33 阅读 · 0 评论 -
28、ESG与AI教育:从风险分类到伦理教学的探索
本文探讨了ESG风险分类学的构建与应用,通过多语言案例库和迭代开发方法形成包含15个维度、47个特征的分类体系,并引入ESG指纹概念以识别风险模式。同时,文章分析了大数据与人工智能在ESG风险识别中的潜力,提出自动化风险识别的操作流程。在AI教育方面,介绍了利用对抗性聊天机器人教授负责任AI的课程实践,强调跨学科思维与伦理意识培养。最后展望了ESG管理与AI伦理教育的未来发展方向,旨在推动可持续决策与科技向善。原创 2025-09-24 16:02:27 · 51 阅读 · 0 评论 -
27、构建负责任的人工智能与 ESG 商业模型
本文探讨了在数字化时代如何构建负责任的人工智能(AI)与环境、社会与治理(ESG)相结合的商业模型。通过提出‘负责任的AI决策画布’的六个递进层次,指导企业在AI应用中实现伦理与效率的平衡。同时,文章分析了当前ESG评估体系的局限性,提出需要结构化的分类学来系统识别和管理ESG争议,并借助人工智能技术构建动态、透明的ESG信息系统。结合八个迈向负责任AI业务的关键步骤,企业可将AI原则融入战略流程,提升可信度与长期价值。最终目标是推动AI与ESG深度融合,支持可持续发展目标的实现。原创 2025-09-23 14:29:00 · 52 阅读 · 0 评论 -
26、构建负责任的人工智能商业模式
本文探讨了构建负责任的人工智能商业模式的必要性与实施路径。随着数据成为关键资源,人工智能在推动数字化转型的同时也带来了歧视、不平等和环境可持续性等挑战。文章分析了监管、研究和商业三大生态系统的发展现状,提出了负责任人工智能的五个成熟度阶段,并系统阐述了以原则、支柱和商业模式为核心的实践框架。通过负责任的人工智能商业模式画布和决策画布,企业可在追求商业价值的同时确保伦理合规、社会公平与可持续发展。未来需企业、政府与公众协同努力,共同构建安全、可信、以人为本的人工智能生态。原创 2025-09-22 13:32:21 · 46 阅读 · 0 评论 -
25、探索有目的的人工智能与可持续发展
本文探讨了人工智能与可持续发展的融合,分析了数字技术对环境的影响,AI在透明世界、人类增强和机器自主三大领域的应用及其伦理挑战。文章提出了评估有目的AI的三大标准:可扩展的投资回报、负责任的设计和有意义的意图,并以西门子的实践为例,展示了生成式设计、患者数字双胞胎和列车压力监测等创新应用。同时,介绍了西门子在推动数字创新文化、新型团队管理及科技促进可持续发展合作方面的探索,强调在技术进步中兼顾环境、社会与经济责任的重要性。原创 2025-09-21 12:47:54 · 33 阅读 · 0 评论 -
24、可持续发展与人工智能:Flip和rooom的创新之路
本文探讨了两家创新企业Flip和rooom如何通过数字化技术推动可持续发展。Flip专注于为企业提供简单易用、安全合规的员工沟通应用,尤其关注无办公桌员工的参与,促进企业文化建设与信息平等;rooom则利用元宇宙技术,在3D、AR/VR领域打造节能高效的数字体验平台,支持虚拟活动、在线零售优化和远程协作,显著降低碳排放。两者均将技术创新与环境、社会及经济可持续性相结合,展示了科技企业在绿色转型中的引领作用。原创 2025-09-20 15:41:02 · 44 阅读 · 0 评论 -
23、科技服务于人:企业中的数据分析、人工智能与可持续发展
本文探讨了数据分析、人工智能与可持续发展在企业中的融合应用。通过宝马集团在生产系统中的人工智能实践、Deutsche Telekom的TechBoost创业支持计划以及Flip协作应用程序的案例,展示了科技如何提升企业效率、降低成本、促进员工沟通,并推动环境友好和社会进步。文章还分析了可视化分析、AI模型流程等技术细节,总结了科技在经济、社会和环境层面的综合影响,强调科技服务于人的核心理念,展望了未来企业通过科技创新实现可持续发展的方向。原创 2025-09-19 16:15:57 · 34 阅读 · 0 评论 -
22、科技服务于人:宝马生产系统中的数据分析与人工智能民主化
本文深入探讨了宝马在数据分析与人工智能领域的战略布局与实践应用,涵盖可视化分析、研究合作、AI开发推广流程及数据保护措施。通过设立教育中心、构建中央数据中心、采用MVP开发模式和棋盘式推广逻辑,宝马实现了AI技术在质量控制等场景的高效落地。文章强调‘科技服务于人’的核心理念,体现开放性、信任、透明度与责任等价值观,并展示如何通过人机协作推动可持续发展,为制造业数字化转型提供可借鉴的范例。原创 2025-09-18 12:07:46 · 30 阅读 · 0 评论 -
21、宝马集团:人工智能在生产中的社会责任与价值创造
本文探讨了宝马集团在生产系统中应用人工智能的社会责任与价值创造。通过自动化质量检查、减轻员工负担和提升质量意识,人工智能显著优化了生产效率与员工体验。宝马秉持‘技术服务于人’的理念,强调以员工为中心的设计、严格的测试流程与持续的风险控制,并通过开源贡献推动行业创新。文章还分析了人工智能在跨领域应用、全球战略及未来趋势中的潜力,提出加强研发、人才培养与社会影响关注等建议,展现了宝马在智能制造与社会责任方面的领先地位。原创 2025-09-17 14:40:15 · 31 阅读 · 0 评论 -
20、科技服务于人:宝马生产系统中数据分析与人工智能的民主化
本文探讨了宝马集团在高端汽车生产中如何通过数据分析和人工智能技术应对日益复杂的制造环境,提升质量控制效率与生产智能化水平。文章回顾了传统质量检查的局限性,介绍了可视化分析和基于深度学习的目标检测等创新应用,并从企业社会责任(CSR)视角分析了这些技术对客户、员工、管理层及社会的影响。宝马通过降低技术使用门槛、强化员工参与、确保算法可靠性,推动AI在生产中的民主化,实现技术创新与人文关怀的平衡。未来,宝马将持续深化数据驱动的智能制造,构建更加高效、透明且负责任的全球价值链。原创 2025-09-16 11:21:56 · 26 阅读 · 0 评论 -
19、人工智能的社会威胁、局限及应对策略
本文探讨了人工智能带来的社会威胁与技术局限性,分析了技术民主化引发的歧视与舆论操纵风险,以及媒体领域虚假新闻和深度伪造的危害。同时指出人工智能在创造力、情感、价值观和道德层面无法替代人类,并强调生活是非线性且超越问题解决的。为应对挑战,文章提出四大策略:加强情商导向的教育改革、明确技术发展的责任担当、推进人工智能标准化进程,以及开展涵盖安全、伦理、数据与验证的广泛研究,旨在实现人工智能的安全、可靠与可持续发展。原创 2025-09-15 15:16:22 · 43 阅读 · 0 评论 -
18、人工智能学习方法与发展挑战解析
本文深入解析了人工智能的主流学习方法,包括无监督学习和强化学习,并系统探讨了AI发展过程中面临的五大核心挑战:可建模性、可验证性、可解释性、伦理道德与问责制。文章分析了各挑战之间的相互关联,提出了从数据管理、技术研发、伦理法律到人才培养的综合应对策略,并展望了AI未来在安全、可靠、可解释及符合伦理方向的发展前景,强调跨学科协作对推动AI健康可持续发展的重要性。原创 2025-09-14 11:22:25 · 27 阅读 · 0 评论 -
17、掌握可信人工智能
本文全面介绍了人工智能的发展历程、核心技术及其应用领域,涵盖了从基于规则的系统到现代神经网络的演进。文章重点探讨了监督学习、无监督学习和强化学习等机器学习方法,并分析了人工智能在硬件支持、可解释性、伦理和责任界定等方面面临的挑战。同时介绍了奥地利在人工智能研究领域的贡献与国家战略,最后展望了可解释人工智能、伦理AI、混合智能和绿色人工智能等未来发展方向,强调构建可信人工智能的重要性。原创 2025-09-13 14:08:18 · 32 阅读 · 0 评论 -
16、负责任人工智能采用的实践洞察
本文探讨了负责任人工智能采用的实践洞察,提出一个融合伦理、技术和经济迭代的模型,强调在人工智能开发与应用过程中持续进行伦理反思和利益相关者参与。通过三个关键行动点——创建伦理愿景、用例测试评估长期社会影响、迭代式整合社会视角——将伦理融入人工智能采用的各个阶段。文章还分析了该模型对企业决策的指导意义,包括促进责任采用、降低成本、确保社会合法性等,并指出未来需在战略管理影响、工具方法系统化及模型专业化方面进一步研究。该框架为组织从战略到运营层面落实人工智能治理提供了可行路径。原创 2025-09-12 12:06:09 · 25 阅读 · 0 评论 -
15、私营部门治理下的负责任人工智能采纳
本文探讨了私营部门在人工智能(AI)采纳过程中实现负责任治理的必要性与路径。通过整合社会需求、伦理考量和多利益相关者互动,提出以改进的第三阶段创新过程模型为基础的负责任AI采纳框架。文章分析了当前研究现状,强调将抽象伦理原则转化为可操作实践的挑战,并结合AI生命周期模型,构建涵盖构思、开发、测试、部署与持续反馈的治理流程。通过案例分析展示了企业在各阶段融入社会责任的具体做法,同时指出在伦理操作化、利益协调和技术发展间平衡所面临的挑战及应对策略。最后展望未来,呼吁企业、政府与社会协同推进负责任AI的发展,以实原创 2025-09-11 13:03:14 · 31 阅读 · 0 评论 -
14、协作式人工智能发展策略与负责任的人工智能采纳
本文探讨了协作式人工智能发展策略与负责任的人工智能采纳在私营部门治理中的关键作用。分析了AI发展中的技术挑战与合作需求,强调通过开源或有限合作推动技术创新,并结合全球竞争背景提出合作必要性。文章提出负责任AI采纳的治理模型,涵盖需求评估、伦理审查、利益相关者参与、风险管理和持续监测等环节,倡导将伦理融入AI全生命周期。通过医疗与金融行业的案例,展示了协作与伦理实践的结合方式。最后展望未来趋势,建议企业加强合作、建立伦理管理体系并培养跨学科人才,以构建健康可持续的AI生态系统。原创 2025-09-10 09:28:42 · 45 阅读 · 0 评论 -
13、协作式人工智能开发策略的治理:机遇与风险并存
本文探讨了协作式人工智能开发的治理策略,分析了在数据整合、模型开发、评估与部署各阶段面临的机遇与风险。文章介绍了如本体、合成数据、差分隐私和同态加密等技术手段在解决数据不统一和隐私保护问题中的应用,并比较了集中式、分布式及联邦学习等模型开发方式的优劣。同时,强调了在经济与技术层面的风险治理重要性,提出了部分协作与全面协作的选择框架。通过Substra等治理框架和迭代治理方法,企业可在保障安全的前提下实现资源共享与效率提升。最后,文章展望了技术进步与治理机制完善推动协作式AI在更广领域发展的未来趋势。原创 2025-09-09 12:25:10 · 46 阅读 · 0 评论 -
12、协作式人工智能开发策略的治理
本文探讨了协作式人工智能开发的策略与治理,分析了企业在人工智能应用中通过跨组织协作实现资源共享、成本分摊和技术创新的机会。基于CRISP-DM模型,文章详细阐述了在构思、数据准备、模型训练、评估、沟通与部署各阶段的协作潜力,并强调了治理在应对数据隐私、知识产权、利益分配和协调难题中的关键作用。最终提出,有效的治理结构和多利益相关方协作是实现负责任、可持续人工智能发展的核心。原创 2025-09-08 10:29:05 · 28 阅读 · 0 评论 -
11、AI治理:迈向繁荣未来之路
本文探讨了AI作为第四次工业革命核心驱动力所带来的深刻社会变革,提出了从知识掌控、透明度、愿景引领到体验与拥抱变革的AI接受周期模型。文章强调企业社会责任(CSR)在AI治理中的关键作用,倡导通过教育、透明沟通和积极愿景引导员工、客户和社会共同应对AI带来的挑战与机遇。结合‘大辞职’现象,分析了AI填补劳动力缺口的潜力,并展望AI作为可靠伙伴与人类深度融合的未来。最终呼吁个人、企业与社会协同努力,实现与AI的和谐共处,迈向可持续繁荣的未来。原创 2025-09-07 10:58:30 · 46 阅读 · 0 评论 -
10、AI治理:迈向繁荣未来的关键
本文探讨了AI治理在迈向繁荣未来中的关键作用,涵盖AI网络安全、法律背景下的责任归属、电子人概念的引入及其权利与义务、AI责任限制与意识关联等核心议题。文章分析了企业社会责任(CSR)在引导AI向善发展中的推动作用,并提出CSR与AI治理协同发展的路径。同时展望了AI治理的未来趋势,包括加强国际合作、技术与法律融合、多元化治理主体和动态适应性治理。最后为企业和个人提供了应对AI时代的策略建议,强调构建安全、可靠、有益的AI生态系统的重要性。原创 2025-09-06 11:49:41 · 48 阅读 · 0 评论 -
9、迈向繁荣未来的人工智能治理
本文探讨了迈向繁荣未来的人工智能治理关键议题,涵盖网络安全治理、人工智能决策风险与控制、受污染AI的处理、阿西莫夫定律的局限性以及通过软件规则进行控制的可行性。文章提出构建人类+人工智能联合决策的风险矩阵,强调在高风险场景中采用混合决策团队,并分析了技术、伦理与安全层面的挑战与应对策略。最后展望了人工智能治理的技术发展趋势、社会影响及国际合作的重要性,呼吁全球协同推进AI的可持续发展。原创 2025-09-05 15:32:11 · 42 阅读 · 0 评论 -
8、AI治理:迈向繁荣未来
本文探讨了AI治理在实现技术繁荣与人类福祉平衡中的关键作用。从透明度与信任构建、道德AI设计,到工作场所的心理挑战应对,全面分析了AI对社会的深远影响。文章详细阐述了AI的完整生命周期管理,涵盖研究、设计、训练、测试、学习、适应、退役与知识回收等环节,并强调跨学科合作、伦理准则制定、公众参与及持续监测的重要性。通过特斯拉FSD等案例,揭示了企业如何通过透明化和用户参与建立信任。最终提出,唯有将人类价值嵌入AI系统全周期,才能确保技术向善,推动可持续的智能未来。原创 2025-09-04 12:06:14 · 51 阅读 · 0 评论 -
7、人工智能治理:全球差异与框架构建
本文探讨了全球在人工智能治理与企业社会责任(CSR)方面的显著差异,分析了西方国家与中俄等国在人工智能认知、应用和监管上的不同路径。文章指出,由于经济、文化和社会价值观的多样性,难以形成统一的全球AI治理框架。企业需构建适应多极化规则的自身治理体系,并强调数据质量、算法透明度和跨文化适应性的重要性。通过结构化的数字治理框架——涵盖数据治理、人工智能治理和网络安全——企业可在保障合规的同时,推动AI技术的可持续、负责任发展。原创 2025-09-03 16:05:10 · 46 阅读 · 0 评论 -
6、构建繁荣未来:AI治理与CSR模式拓展
本文探讨了AI治理与企业社会责任(CSR)模式的融合与发展,分析了人机协作的新趋势,强调人类从劳动者向AI培训师和教练的角色转变。文章介绍了三种AI协作模式,并结合特斯拉等案例展示其应用前景。同时,提出传统CSR模型的局限性,倡导构建包含经济、社会、生态与法律四维平衡的系统性CSR模型。随着数字化和AI技术的发展,文章进一步阐述AI在环境管理、社会公益和企业治理中的应用潜力,指出数据隐私、算法偏见和技术能力是主要挑战,并提供实施路径与应对策略。最终通过案例分析和流程图示,展现AI与CSR结合的实践价值,呼吁原创 2025-09-02 12:26:35 · 23 阅读 · 0 评论 -
5、AI治理:企业应用与挑战
本文探讨了人工智能在企业中的广泛应用及其带来的治理挑战。从公众对AI超越人类能力的担忧,到AI生产力与复杂性之间的悖论,文章分析了为何通用人工智能(GAI)将成为未来高生产力的核心,并强调道德必须通过学习而非编程来实现。企业作为复杂控制论系统,需构建包含边缘AI、狭义AI与通用AI的分层架构,推动智能流程闭环落地。然而当前多数企业仍停留在‘AI分析’阶段,陷入‘AI瘫痪’,未能将知识转化为行动。真正的附加值源于AI触发的实际决策与交易,如特斯拉FSD和智能割草机等案例所示。文章呼吁建立先进的CSR-AI框架原创 2025-09-01 10:23:46 · 43 阅读 · 0 评论 -
4、人工智能治理:迈向繁荣未来的探索
本文探讨了人工智能在社会、经济和伦理层面的深远影响,分析了不同类型人工智能的特点及其在价值链中的作用。文章强调企业社会责任(CSR)在引导人工智能健康发展中的关键角色,提出需通过多方协作建立有效治理框架,以应对就业变革、责任认定、伦理困境等挑战。同时展望了从狭义人工智能向通用人工智能演进的未来趋势,呼吁社会各界共同参与,推动人工智能朝着造福人类的方向发展,实现乌托邦而非反乌托邦的未来。原创 2025-08-31 09:36:16 · 36 阅读 · 0 评论 -
3、人工智能:迈向繁荣未来的关键力量
本文深入探讨了人工智能作为第四次工业革命核心力量在推动经济和社会发展中的关键作用,分析了AI带来的机遇与挑战,强调将企业社会责任和伦理融入AI发展的重要性。文章阐述了AI治理的实施策略,涵盖伦理原则、监管机制、跨部门合作等方面,并讨论了AI与数据治理、网络安全的紧密关系。同时,对比了不同文化背景下的AI治理差异,提出了动态、协同、全球化的未来治理方向。通过愿景型企业家的创新案例,展示了AI在医疗、教育、环保等领域的应用潜力,呼吁构建以人为本、可持续的AI生态系统,共同迈向繁荣未来。原创 2025-08-30 15:23:01 · 47 阅读 · 0 评论 -
2、人工智能:管理挑战、伦理影响与社会变革
本文探讨了人工智能在管理、伦理和社会层面带来的多重挑战与机遇。从企业应用中的数据偏差、决策透明度到员工接受度,再到管理者战略规划与网络安全,全面分析了人工智能实施中的关键问题。同时,文章强调了人工智能在健康、教育、金融和社会领域的广泛应用及其伴随的伦理考量,如隐私保护、文化差异和人类尊严。通过构建跨学科合作、遵循伦理原则并融合人类价值观,人工智能有望推动可持续发展,实现人机和谐共处。原创 2025-08-29 11:57:54 · 57 阅读 · 0 评论 -
1、人工智能:管理挑战与责任
本文探讨了人工智能在当今时代带来的机遇与挑战,分析了AI对管理决策、企业战略、组织架构以及伦理责任的深远影响。文章指出,尽管AI技术有望显著提升效率和经济增长,但其应用也伴随着决策偏差、透明度不足和员工不确定性等问题。企业管理者需积极参与AI治理,确保技术发展与道德标准、组织目标相一致,并通过建立可信AI框架实现可持续创新。原创 2025-08-28 11:38:45 · 38 阅读 · 0 评论
分享