cloud
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、随机逼近与势函数方法概述
本文详细介绍了随机逼近与势函数方法的基本理论及其应用。随机逼近部分涵盖Lipschitz条件、Dvoretzky广义程序、加速收敛方法及动态随机逼近等内容,重点讨论了Kiefer-Wolfowitz与Robbins-Monro程序的扩展与应用。势函数方法则聚焦于其在未知函数逼近中的应用,包括判别函数和响应函数的估计。文章进一步对比了两种方法的特点,并结合信号处理与机器学习领域的实际案例,展示了其广泛应用。最后,总结了两种方法的优势与未来研究方向。原创 2025-09-08 06:34:44 · 67 阅读 · 0 评论 -
14、统计检验、组合枚举与随机逼近相关方法详解
本博客详细探讨了修正序贯概率比检验(Modified SPRT)的性质,包括终止时间期望值和误差概率的推导,并与标准 Wald's SPRT 进行对比。此外,博客分析了组合枚举问题中风险函数计算所需表格的缩减公式及其数学证明。还介绍了特征排序与模式分类实验的动态规划计算流程,以及随机逼近中的 Robbins-Monro 和 Kiefer-Wolfowitz 算法及其收敛性定理。这些方法为统计推断、优化和模式识别提供了理论支持和实用工具。原创 2025-09-07 15:07:58 · 39 阅读 · 0 评论 -
13、顺序分析与广义卡尔胡宁 - 洛埃夫展开的理论与应用
本文深入探讨了顺序分析与广义卡尔胡宁-洛埃夫展开的理论与应用。重点介绍了顺序概率比检验(SPRT)及其扩展形式,讨论了其在假设检验中的最优性质和实际应用。同时,结合贝叶斯顺序决策程序,分析了如何在观测成本和信息收益之间取得平衡,以最小化平均风险。此外,还推导了广义卡尔胡宁-洛埃夫展开的最优性质,为随机函数的最佳近似提供了理论依据。这些方法在统计学、信号处理和决策分析中具有广泛的应用价值。原创 2025-09-06 09:23:35 · 32 阅读 · 0 评论 -
12、随机近似学习方法:无监督学习与时变参数估计
本博客详细介绍了随机近似学习方法在无监督学习和时变参数估计中的应用。文章首先对无监督学习系统进行了数学公式化描述,并提出了基于随机近似方法的参数估计策略。随后,针对时变参数的动态特性,引入了动态随机近似算法,并通过实例展示了其在监督和无监督学习中的有效性。为了提升算法的收敛速度,还介绍了如Kesten加速方案等改进方法。最后,对随机近似方法的稳定性、与其他学习技术的比较以及未来研究方向进行了深入分析,并给出了其在金融风险评估和医疗诊断等领域的应用案例。原创 2025-09-05 13:21:44 · 56 阅读 · 0 评论 -
11、利用随机逼近进行顺序识别系统学习
本文深入探讨了随机逼近在监督学习和无监督学习中的应用,重点分析了其在顺序识别系统中的作用。随机逼近是一种在存在噪声和不确定性环境下进行参数估计的强大工具。博文详细介绍了随机逼近的基本原理,并分别讨论了其在监督学习和无监督学习中的多种应用场景,包括未知概率估计、概率密度函数逼近、高斯分布参数估计、二项分布参数学习以及混合分布的参数识别等。此外,还总结了随机逼近算法的优势与挑战,并通过实际应用案例展示了其广泛适用性。文章最后展望了随机逼近在未来人工智能和机器学习领域的发展潜力。原创 2025-09-04 14:46:59 · 36 阅读 · 0 评论 -
10、贝叶斯学习:从理论到实践的全面解析
本文全面解析了贝叶斯学习的理论与实践应用,从参数缓慢变化的贝叶斯学习到经验贝叶斯方法,再到Pugachev提出的一般学习模型,详细探讨了不同场景下的参数估计方法。文章还总结了不同学习方法的适用情况、优缺点,并给出了方法选择建议和未来研究方向,为贝叶斯学习在复杂问题中的应用提供了清晰的指导。原创 2025-09-03 14:33:48 · 70 阅读 · 0 评论 -
9、模式识别中的非参数与贝叶斯学习方法
本文探讨了模式识别中的两种重要方法:非参数顺序分类和贝叶斯学习。非参数顺序分类基于顺序排名构建分类器,适用于模式分布未知的场景;而贝叶斯学习则通过迭代应用贝叶斯定理来估计和更新分布参数,适用于已知分布形式但参数未知的情况。文章通过实验和案例分析比较了两种方法的优劣,并提出了结合使用这两种方法的手写字符识别方案,展示了其在实际应用中的潜力与优势。原创 2025-09-02 14:49:14 · 38 阅读 · 0 评论 -
8、顺序二样本检验与非参数模式分类器设计
本博客介绍了基于顺序二样本检验的非参数模式分类器设计方法,重点讨论了在Lehmann备择假设下使用Wald序贯概率比检验(SPRT)进行模式分类的原理与实现。文章涵盖顺序二样本检验的基本概念、Lehmann备择假设的合理性、分类器的设计与计算示例,并分析了最优性能与多类推广。通过使用基于顺序秩的非参数检验方法,该分类器能够在最少测量次数下实现高效的模式识别,适用于未知分布下的分类任务。原创 2025-09-01 13:16:54 · 72 阅读 · 0 评论 -
7、模式识别中的动态规划与非参数方法
本博文探讨了模式识别中动态规划与非参数方法的应用,重点分析了顺序识别程序相较于非顺序程序在特征测量减少比例和总成本上的优势。文章介绍了动态规划在特征子集选择中的应用,以及次优顺序模式识别的三种情况,并进一步讨论了非参数方法在顺序模式分类中的应用。通过引入顺序秩向量和其概率分布的计算方法,为非参数环境下的模式分类提供了理论支持。最后,总结了动态规划与非参数方法的优势与挑战,并展望了未来的发展方向。原创 2025-08-31 14:39:29 · 34 阅读 · 0 评论 -
6、顺序识别反向程序:理论、实验与优化策略
本文探讨了顺序识别反向程序中的关键技术,包括降维方法、模式分类实验以及特征排序与分类的优化策略。通过使用充分统计量和马尔可夫依赖模型,有效降低存储需求并提升识别效率。实验结果表明,动态规划程序在测量成本和识别率方面优于非顺序程序,而特征排序策略进一步优化了分类效率。文章还分析了损失函数和测量成本对分类性能的影响,为实际应用提供了理论支持与优化方向。原创 2025-08-30 14:39:20 · 52 阅读 · 0 评论 -
5、有限序列分类与识别的方法及实验研究
本文探讨了有限序列分类与识别的前向与后向过程方法。前向过程通过构建时变停止边界的修改序贯概率比检验(SPRT 和 GSPRT)实现快速分类,减少特征测量次数,并在手写英文字母实验中表现优异。后向过程基于动态规划实现最优序贯决策,但面临计算复杂度高的问题。文章对比了两种方法的优劣,并展望了未来研究方向,如时变停止边界优化、降低动态规划复杂度以及多方法融合应用。原创 2025-08-29 13:30:02 · 53 阅读 · 0 评论 -
4、统计模式识别中的特征选择、排序与顺序分类方法
本文探讨了统计模式识别中的关键问题,包括特征选择与排序的理论基础与实验验证,以及有限顺序分类过程中使用标准和修改的顺序概率比测试(SPRT)的效果。通过对手写和印刷字符的实验,展示了特征排序如何显著减少平均测量次数,同时保持较高的识别精度。此外,介绍了修改的SPRT方法,该方法通过时间变化的停止边界在有限特征测量内终止分类过程,从而在识别精度与测量成本之间实现平衡。文章还比较了不同特征选择与排序方法的优劣,并讨论了实际应用中的考虑因素及未来发展趋势。原创 2025-08-28 15:17:11 · 44 阅读 · 0 评论 -
3、模式识别中的特征选择与排序方法解析
本文深入探讨了模式识别中的特征选择与排序方法,重点解析了信息理论方法和 Karhunen-Loève 展开方法的原理与应用。信息理论方法基于特征与模式类之间的相关性,利用熵、平均信息和散度等指标进行特征评估和在线排序,适用于复杂概率关系和顺序识别系统。Karhunen-Loève 展开方法则通过协方差函数确定特征的相对重要性,进行预加权排序,适用于概率信息有限的场景。文章还通过手写数字识别案例展示了两种方法的实际应用,并提出了未来发展方向。原创 2025-08-27 10:46:54 · 52 阅读 · 0 评论 -
2、模式分类技术全面解析
本文全面解析了模式分类技术,涵盖线性分类器训练、统计分类方法、顺序决策模型以及模式识别系统中的学习机制。详细介绍了线性可分情况下的误差校正规则、贝叶斯决策理论、两类和多类模式的顺序概率比检验(SPRT/GSPRT)以及监督和无监督学习的基本概念。通过理论分析和流程图展示,帮助读者理解不同分类技术的原理和应用场景。原创 2025-08-26 15:12:23 · 41 阅读 · 0 评论 -
1、模式识别与机器学习中的顺序方法:从基础到应用
本博客系统地介绍了模式识别与机器学习的基本概念及其应用,涵盖特征提取、分类决策、确定性分类技术、统计分类方法以及顺序决策模型等内容。详细讨论了如线性判别函数、最小距离分类器、多项式判别函数等分类技术,以及贝叶斯分类器、最大似然分类器等统计方法。同时,博客还探讨了顺序模式识别中的学习机制,如贝叶斯估计技术和随机逼近过程。通过这些方法的综合运用,可有效提升模式识别和机器学习系统的性能与效率。原创 2025-08-25 10:20:56 · 49 阅读 · 0 评论
分享