池化方法(1):General / Mean / Max / Stochastic / Overlapping / Global Pooling
CNN网络中常见结构是:卷积、池化和激活。卷积层是CNN网络的核心,激活函数帮助网络获得非线性特征,而池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。深度网络越往后面越能捕捉到物体的语义信息,这种语义信息是建立在较大的感受野基础上。
1、一般池化(General Pooling)
池化作用于图像中不重合的区域(与卷积操作不同),定义池化窗口的大小为sizeX,即图中红色正方形的边长,定义两个相邻池化窗口的水平位移 / 竖直位移为stride。一般池化由于每一池化窗口都是不重复的,所以sizeX=stride。
2、均值池化(Mean / Average Pooling)
一般池化的基础上,