池化方法(1):General / Mean / Max / Stochastic / Overlapping / Global Pooling

池化方法(1):General / Mean / Max / Stochastic / Overlapping / Global Pooling

 

CNN网络中常见结构是:卷积、池化和激活。卷积层是CNN网络的核心,激活函数帮助网络获得非线性特征,而池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。深度网络越往后面越能捕捉到物体的语义信息,这种语义信息是建立在较大的感受野基础上。

 

1、一般池化(General Pooling)

池化作用于图像中不重合的区域(与卷积操作不同),定义池化窗口的大小为sizeX,即图中红色正方形的边长,定义两个相邻池化窗口的水平位移 / 竖直位移为stride。一般池化由于每一池化窗口都是不重复的,所以sizeX=stride

池化方法总结(Pooling)

 

2、均值池化(Mean / Average Pooling)

一般池化的基础上,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值