池化的概念以及分类对比

池化是深度学习中卷积神经网络的关键步骤,包括最大池化和平均池化。它通过减小特征图尺寸来实现下采样,降低计算复杂度,同时保持模型的表达能力。最大池化选取区域内的最大值,而平均池化则计算平均值。此外,池化还能够增加模型的不变性,扩大感受野,有助于特征提取。
摘要由CSDN通过智能技术生成

**池化:**pollingpolling是在不同通道上分开执行的,池化的操作是不改变通道数的,并且不需要参数的控制。
它根据窗口的大小进行操作,一般分为最大池化和平均池化。

池化层的作用:
1.下采样
2.降维、去除冗余信息、对特征进行压缩、简化网络复杂度、减小计算量、减小内存消耗等等。各种说辞吧,总的理解就是减少参数量
3.实现非线性
4.扩大感受野
5.实现不变形(平移不变性、旋转不变性和尺度不变性)

池化主要有哪几种:
1.Max Polling(最大池化):选图像区域的最大值作为该区域池化后的值
主要功能是下采样,不会损失识别结果。这意味着卷积后的feature map中有对于识别物体不必要的冗余信息。
2.Average Polling(平均池化)计算图像区域的平均值作为该区域池化后的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值