机器学习之“查准率”与“查全率”、“F1得分”的分析实例

本文详细介绍了机器学习中常用的评估指标,如查准率、查全率和F1得分,并通过具体算法实例比较了不同指标下的性能。查准率关注预测为正例的准确性,查全率衡量找到所有正例的能力,而F1得分综合考虑了精确度和灵敏度。在实际应用中,根据任务需求选择合适的评估指标至关重要。

一、常用评估指标

  • 查全率: 真实正例被预测为正例的比例

在这里插入图片描述

  • 真正例率: 真实正例被预测为正例的比例

显然查全率与真正例率是相等的。

  • 查准率:预测为正例的实例中真实正例的比例

在这里插入图片描述

  • 假正例率: 真实反例被预测为正例的比例

两者并没有直接的数值关系。

  • F1得分:是调和平均的精确度和灵敏度

在这里插入图片描述

二、问题

在这里插入图片描述

二、分析过程

获取混淆矩阵
算法1:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值