Tensorflow激活函数 对比分析

本文对比分析了Tensorflow中的多种激活函数,包括ReLU、Sigmoid、Tanh、ReLU6、CReLU、Leaky ReLU、PReLU、RReLU、ELU和SeLU。ReLU因其计算效率和稀疏性在卷积层中常用,Sigmoid和Tanh有梯度消失问题,ReLU6限制了输出范围,CReLU和Leaky ReLU解决了ReLU的神经元坏死问题,PReLU和RReLU引入了可调整或随机的系数,ELU和SeLU具有更好的梯度流动性和自归一化特性。
摘要由CSDN通过智能技术生成
1、ReLU (tf.nn.relu)

优点:1)使网络可以自行引入稀疏性,提高了训练速度;2)计算复杂度低,不需要指数运算,适合后向传播。

缺点:1)输出不是零均值,不会对数据做幅度压缩;2)容易造成神经元坏死现象,某些神经元可能永远不会被激活,导致相应参数永远不会更新。

卷积层后面通常用ReLU。

2、Sigmoid (tf.sigmoid)

它的曲线呈现S形,将变量映射到(0,1)这个值域范围上。它的导数 f'(x)=f(x)[1-f(x)]

优点:1)输出范围有限,数据不会发散;2)求导简单。

缺点:1)激活函数计算量大,涉及指数和除法;2)反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。

逻辑回归一般用sigmoid。

Sigmoid原函数及导数图形如下,由图可知,导数从0开始很快就又趋近于0了,易造成“梯度消失”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值