Tensorflow的激活函数

1、阈值激活函数,最简单的激活函数,神经元的输入大于0则为1(激活状态),小于0则为0(抑制状态),这个激活函数意义不大,例如使用梯度下降法的时候,它不能求导,因此它无法对网络参数进行有限的训练。

#Author:ZhenhuaLiu HIT-atci
#date:2021.6.26 19:24
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def threshold(x):
    cond = tf.less(x,tf.zeros(tf.shape(x), dtype = x.dtype))
    out = tf.where(cond, tf.zeros(tf.shape(x)),tf.ones(tf.shape(x)))
    return out
#plotting Threshold Activation Function
h = np.linspace(-1,1,50)
out = threshold(h)
#init = tf.global_variables_initializer()
with tf.Session() as sess:
    #sess.run(init)
    y=sess.run(out)
    plt.xlabel('Activity of Neuron')
    plt.ylabel('Output of Neuron')
    plt.title('Threshold Activation Function')
    plt.plot(h,y)
    plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nwsuaf_huasir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值