剑指offer-刷题笔记-简单题-JZ82 二叉树中和为某一值的路径(一)

JZ82 二叉树中和为某一值的路径(一)

版本2-利用递归调用,递归会遇到一个问题,如果想要计算某一条的路径值不好写,因为二叉树有两个方向,直接计算只能返回一个值,这里很巧妙用了减法,结果是知道的,看看每一条的路径值是否满足,自己就错在这里,一直纠结如何计算总的值。

/**
 * struct TreeNode {
 *	int val;
 *	struct TreeNode *left;
 *	struct TreeNode *right;
 * };
 */

class Solution {
public:
    /**
     * 
     * @param root TreeNode类 
     * @param sum int整型 
     * @return bool布尔型
     */
    bool hasPathSum(TreeNode* root, int sum) {
        // write code here
        if(root == nullptr)
        {
            return false;
        }
        if(root->left == nullptr && root->right == nullptr && sum - root->val == 0)
        {
            return true;
        }
        return hasPathSum(root->left, sum - root->val)||hasPathSum(root->right,sum - root->val);
        
    }
};

版本2- 利用辅助栈深度优先遍历

class Solution {
public:
    bool hasPathSum(TreeNode* root, int sum) {
        //空节点找不到路径
        if(root == NULL) 
            return false;
        //栈辅助深度优先遍历,并记录到相应节点的路径和
        stack<pair<TreeNode*, int> > s; 
        //根节点入栈
        s.push({root, root->val}); 
        while(!s.empty()){
            auto temp = s.top();
            s.pop();
            //叶子节点且路径和等于sum
            if(temp.first->left == NULL && temp.first->right == NULL && temp.second == sum)
                return true;
            //左节点入栈
            if(temp.first->left != NULL) 
                s.push({temp.first->left, temp.second + temp.first->left->val});
            //右节点入栈
            if(temp.first->right != NULL) 
                s.push({temp.first->right, temp.second + temp.first->right->val});
        }
        return false;
    }
};

描述: 给定一棵二叉树和一个整数目标值,找出所有从根节点到叶子节点的路径,使得路径上的节点值之和等于目标值。 解思路: 我们可以使用深度优先搜索(DFS)的思想来解决这个问。具体步骤如下: 1. 定义一个列表path,用于存储当前的路径。 2. 递归遍历每个节点: a. 将当前节点添加到path。 b. 如果当前节点是叶子节点且路径上的节点值之和等于目标值,则将当前路径添加到结果。 c. 递归遍历当前节点的左子树和右子树。 d. 在递归结束后,将当前节点从path移除,以便开始探索其他路径。 3. 返回结果列表,即所有路径和等于目标值的路径。 代码实现: ``` class Solution: def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]: def dfs(node, path, target): if not node: return path.append(node.val) if not node.left and not node.right and sum(path) == target: res.append(path.copy()) dfs(node.left, path, target) dfs(node.right, path, target) path.pop() res = [] dfs(root, [], targetSum) return res ``` 以上代码,我们定义了一个辅助函数dfs来进行递归遍历。在遍历的过程,我们使用列表path来存储当前路径,如果路径上的节点值之和等于目标值,则将当前路径添加到结果列表res。最后返回结果res。 时间复杂度分析: 假设二叉树的节点数为n,则时间复杂度为O(n),因为我们需要遍历每个节点一次。需要注意的是,在每个节点处,我们都会调用sum函数来计算当前路径的节点值之和,因此总的时间复杂度还需要考虑到sum函数的时间复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值