DQN算法

1、深度网络

尽管神经网络和 Q表都可以用来近似动作价值函数,但是它们的形式是不一样的,Q表是一个二维表格,而神经网络是一个实实在在的函数。Q表只能描述离散的状态和动作下的价值,但神经网络在连续的情况下也可以满足。

2、经验回放

参考了神经网络的训练模式,即数据是从数据集中随机采样的(符合独立同分布),采取了将智能体和环境交互产生的样本先存储起来,然后通过采样的方式选取一批样本用来训练神经网络,这样能够保证loss的收敛更稳定和更快。

3、目标网络

其实还是为了辅助loss的收敛,我理解样本池里的样本并不够多,所以为了避免相邻采样关联性太强,所以需要目标网络的参数保持一定时间不变来维持收敛的稳定性。

4、DQN算法

DQN(Deep Q-Network)是一种基于深度学习的强化学习算法,用于解决离散动作空间的马尔可夫决策过程(MDP)问题。它是由Google DeepMind团队提出的,并在解决Atari游戏中取得了显著的成果。 DQN算法的核心思想是使用一个深度神经网络来近似Q值函数,该函数可以评估在给定状态下采取不同动作的价值。通过不断地与环境进行交互,DQN算法通过最大化累积奖励来学习最优的策略。 在PyTorch中实现DQN算法,可以按照以下步骤进行: 1. 定义深度神经网络模型:使用PyTorch构建一个神经网络模型,通常是一个卷积神经网络或全连接神经网络。该模型将输入状态作为输入,并输出每个动作的Q值。 2. 定义经验回放缓冲区:为了减少样本之间的相关性,DQN算法使用经验回放缓冲区来存储智能体与环境交互的经验。这个缓冲区可以随机采样以生成训练样本。 3. 定义损失函数和优化器:使用均方误差(MSE)作为损失函数来度量预测的Q值与目标Q值之间的差异。使用优化器(如Adam)来更新神经网络的参数。 4. 定义动作选择策略:DQN算法使用ε-greedy策略来平衡探索和利用。在训练过程中,以ε的概率随机选择动作,以1-ε的概率选择具有最高Q值的动作。 5. 训练网络:通过与环境交互,将经验存储到经验回放缓冲区中,并从中随机采样一批样本进行训练。使用目标网络来计算目标Q值,以减少训练过程中的目标值偏差。 6. 更新目标网络:为了增加算法的稳定性,DQN算法使用一个目标网络来计算目标Q值。定期更新目标网络的参数,通常是通过复制主网络的参数。 7. 迭代训练:重复执行步骤5和步骤6,直到达到预定的训练轮数或达到停止条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值