DQN算法

1、深度网络

尽管神经网络和 Q表都可以用来近似动作价值函数,但是它们的形式是不一样的,Q表是一个二维表格,而神经网络是一个实实在在的函数。Q表只能描述离散的状态和动作下的价值,但神经网络在连续的情况下也可以满足。

2、经验回放

参考了神经网络的训练模式,即数据是从数据集中随机采样的(符合独立同分布),采取了将智能体和环境交互产生的样本先存储起来,然后通过采样的方式选取一批样本用来训练神经网络,这样能够保证loss的收敛更稳定和更快。

3、目标网络

其实还是为了辅助loss的收敛,我理解样本池里的样本并不够多,所以为了避免相邻采样关联性太强,所以需要目标网络的参数保持一定时间不变来维持收敛的稳定性。

4、DQN算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值