WSL下Ubuntu+RTX4090安装CUDA+cuDnn+Pytorch

本文指导如何在WindowsSubsystemforLinux(WSL)中安装Ubuntu,以及如何正确配置CUDA、cuDNN,以支持PyTorch的GPU使用。包括CUDA版本选择、驱动管理、环境变量设置和验证步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装驱动

首先需要明确的是,在WSL下安装Ubuntu,如果要使用主机的GPU卡,只需要在主机Windows上安装驱动,Linux中不需要安装驱动,可以在Linux中使用nvidia-smi命令查看驱动版本。

安装CUDA

避坑注意事项:如果要使用pytorch,建议最高安装CUDA11.8,因为CUDA版本再往上当前没有配套的pytorch版本。

CUDA下载地址:https://developer.nvidia.com/cuda-toolkit-archive

安装WSL Ubuntu版本,点击以下链接直达:

https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=runfile_local

CUDA11.8_Linux下载

wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run

CUDA安装配置

sudo sh cuda_11.8.0_520.61.05_linux.run

rm -rf /usr/local/cuda
ln -s /usr/local/cuda-11.8 /usr/local/cuda

vi ~/.bashrc
# 添加如下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

验证CUDA安装

nvcc -V

安装cuDnn

cuDnn需要配套CUDA版本,配套参考cuDnn官网:

cuDnn下载地址:https://developer.nvidia.com/rdp/cudnn-archive

cuDNN8.9.7_Linux下载

https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.7/local_installers/11.x/cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz/

cuDnn安装配置

tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz

cd cudnn-*-archive

sudo cp include/cudnn*.h /usr/local/cuda/include 
sudo cp -P lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

Pytorch安装

Pytorch与CUDA配套

Pytorch与CUDA配套关系参考:https://pytorch.org/get-started/locally/

使用如下命令可以安装CUDA11.8配套的pytorch,有时候安装不成功,可能与CUDA安装有关系,待验证。

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

如果你的硬件配置和我一样,建议直接下载以下链接的whl进行安装。实测OK。

torch和torchvision配套

建议参考: https://github.com/pytorch/vision#installation

可以看到如果选择torch版本是2.1.0,可以安装0.16版本的torchvision。

torch和torchvision下载地址: ​​​​​​https://download.pytorch.org/whl/torch_stable.html

torch和torchaudio配套

建议参考:Installing pre-built binaries — Torchaudio 2.2.0.dev20240323 documentation

torch2.1.0下载地址

https://download.pytorch.org/whl/cu118/torch-2.1.0%2Bcu118-cp39-cp39-linux_x86_64.whl

torchvision0.16.0下载地址

https://download.pytorch.org/whl/cu118/torchvision-0.16.0%2Bcu118-cp39-cp39-linux_x86_64.whl

torchaudio2.1.0下载地址

https://download.pytorch.org/whl/cpu/torchaudio-2.1.0%2Bcpu-cp39-cp39-linux_x86_64.whl#sha256=b2f634b380264010916d26324ab0f2040412e77029b1cfe59333adf2070f4b99

迅雷云盘备份

https://pan.xunlei.com/s/VNtUlafg0sA20sbCU3fsEsaIA1?pwd=uiy7#
 

### 部署大规模机器学习模型的环境准备 对于在清华大学环境中使用Ubuntu操作系统和NVIDIA GeForce RTX 4090显卡部署一个70B参数的大规模机器学习模型,首先需要确保硬件和软件配置满足需求。RTX 4090提供了强大的计算能力,适合处理大型神经网络训练任务[^1]。 #### 安装必要的驱动程序和支持包 为了使GPU能够被识别并用于加速计算,在安装任何深度学习框架之前,必须先安装最新的NVIDIA GPU驱动以及CUDA Toolkit。可以通过官方渠道获取适用于Linux系统的版本,并按照说明完成安装过程。 #### 设置Windows Subsystem for Linux (WSL) 考虑到操作便捷性和跨平台兼容性,可以考虑利用微软提供的Windows Subsystem for Linux功能来运行基于Linux的应用程序和服务。特别是当主机为Windows时,通过启用此特性可以在不改变现有工作流的情况下轻松访问Linux命令行工具及其生态系统中的各种资源。 ```bash wsl --install -d Ubuntu ``` 上述命令会自动下载并设置好一个全新的Ubuntu发行版实例供后续开发之用。 #### 启用GPU支持于WSL内核中 为了让WSL下的应用程序能充分利用到物理机上的图形处理器性能,还需要额外开启对GPU的支持选项: - 更新至最新版本的Windows Insider Preview Build; - 执行`wsl --update`刷新当前已安装的所有分发版; - 使用管理员权限打开PowerShell窗口输入如下指令激活所需组件: ```powershell wsl --set-default-version 2 wsl --shutdown ``` 此时重启计算机以应用更改效果最佳。 #### 构建Docker容器镜像 针对特定应用场景定制化构建专用的docker image有助于简化依赖管理流程的同时也提高了可移植性。下面给出一段简单的Python脚本作为例子展示如何创建包含PyTorch库在内的基础映射文件(`Dockerfile`): ```dockerfile FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04 RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install -y python3-pip git && \ pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121 WORKDIR /workspace COPY . . CMD ["python3", "./train_model.py"] ``` 这段代码片段定义了一个基于官方CUDA镜像的新层结构,其中包含了编译好的PyTorch二进制文件以及其他可能需要用到的基础库项;最后指定了一条默认启动命令指向项目根目录下名为`train_model.py`的入口点位置。 #### 加载预训练权重与微调优化策略 由于目标模型拥有高达七十亿级别的自由度数量级,因此直接从头开始训练往往耗时过长且难以收敛。建议采用迁移学习方法——即加载已经公开发表过的高质量checkpoint来进行初始化后再做适当调整直至达到预期精度为止。具体实现方式取决于所选用的具体框架API设计风格而有所不同,请参照对应文档指南执行相应步骤。 #### 性能监控与日志记录机制 在整个实验周期里持续跟踪各项指标变化趋势至关重要。借助Prometheus、Grafana这类开源可视化面板解决方案可以帮助研究人员更直观地理解整个迭代过程中存在的瓶颈所在从而采取针对性措施加以改进。与此同时也要注意保存重要事件的时间戳信息以便事后分析排查潜在问题根源。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值