需要认真细致思考的概率问题集锦
我们的直觉常常无法正确处理复杂或非线性的事件,需要依赖数学工具进行分析。在概率领域常常遇到,下面举几个例子。
1.生日问题
一个23人的班级,有生日是同一天的同学的概率是多少?
这个问题是概率论中经典的“生日问题”或称为生日悖论(Birthday Paradox)。直觉上,人们可能会觉得要有很多人才会出现两个生日相同的情况。但实际上,由于组合爆炸效应,当人数达到一定数量时,可能性迅速增加,随机的23人中,就有超过一半的可能性会有至少两人生日相同。
【在数学和概率论中,悖论(paradox)通常指的是一种结果或现象,它与人们的直觉或常识相矛盾,尽管它是通过严密的逻辑推导或数学计算得出的。因此,悖论并不意味着结果是错误的,而是表明我们的直觉可能在某些情况下不可靠。】
假设条件
- 一年有365天:忽略闰年,假设每年有365天。
- 生日均匀分布:每个人的生日在一年中的任何一天都是等可能的。
- 独立性:每个人的生日相互独立,不受其他人影响。
解答:
计算方法
计算至少两人生日相同的概率,可以通过计算“所有人生日都不同(不重复)”的概率,然后用1减去这个概率得到,即根据概率理论:P(重复)=1−P(不重复)。
先计算所有人生日都不同的概率
• 第一个人:有365天可选,概率为365/365=1。
• 第二个人:为了与第一个人不同,有364天可选,概率为364/365。
• 第三个人:为了与前两个人都不同,有363天可选,概率为363/365。
• 以此类推,直到第23个人。
因此,所有人生日都不同的概率为:
计算至少两人生日相同的概率
P(至少两人生日相同)=1−P(所有人生日都不同) = 1 − 0.4927 = 0.5073
补充说明(注意):
(1)
(2)
23人之间的生日组合数为:
这意味着,可以有 253对人 来检查他们的生日是否相同。
这个数字只是告诉我们有多少对可能的比较,它说明了即使人数较少(如23人),潜在比较的数量却迅速增加,但它并没有直接涉及到生日分布的概率,因此不能直接用来计算问题中“至少两人生日相同”的概率。原因如下:
原因1:生日分布不是独立事件
每两个人生日是否相同,并不是完全独立的事件。例如,若A和B生日相同,同时B和C生日相同,那么A和C的生日必然也相同。因此,无法简单地将所有 C(23,2)=253对事件看作独立事件并加总其概率。
原因2:重复计算的问题
如果你尝试直接用 C(23,2),可能会错误地认为你需要计算所有253对中至少一对生日相同的概率。但这些事件之间是相关联的,会重复统计这些重叠事件。
原因3:正确方法是基于全局考虑
问题要求的是“至少有两人生日相同”的概率,这是一个全局性质的问题,而不仅仅是单独比较每一对人的关系。正确的方法是从整体上分析所有人的生日分布,而不是局限于每一对人的情况。
(3)
若换一个角度,在一个23人的班级中,生日是一个特定日期(如1月1日)的概率有多大?
先计算“所有人都不在该特定日期出生”的概率,再用1减去它。
和前面的生日是同一天问题不同,生日是一个特定日期的概率很低,这是因为对于每个人来说,恰好出现在这个指定日期上的概率非常小(1/365)。即使人数增加,这种小概率事件累积起来仍然不会像“任何两人生日相同”那样迅速变得显著。
2.两个孩子问题
如果一个家庭有两个孩子,已知其中一个是男孩,问另一个孩子是女孩的概率是多少?
解答:
在一个家庭有两个孩子的情况下,已知其中至少有一个是男孩,另一个孩子是女孩的概率为 2/3。以下是详细分析:
两个孩子的性别组合共有四种等可能性:
- 男-男(MM)
- 男-女(MF)
- 女-男(FM)
- 女-女(FF)
已知至少有一个男孩,因此排除组合 FF,剩下三种可能的组合:
- MM(男男)
- MF(男女)
- FM(女男)
概率计算
在剩下的三种组合中:
- MM:另一个孩子是男孩(概率 1/3)。
- MF 和 FM:另一个孩子是女孩(共 2/3 概率)。
因此,正确的答案:
另一个孩子是女孩的概率为:2/3
补充说明(注意):
常见误解与澄清
- 误认为概率是 1/2:
- 错误逻辑:假设“另一个孩子独立于已知男孩”,因此概率为 1/2。
- 错误原因:忽略组合间的依赖关系。已知条件缩小了可能的组合范围,需基于剩余组合计算概率。
- 与“指定某个孩子为男孩”混淆:
- 若已知第一个孩子是男孩,则可能的组合为 MM 和 MF,此时第二个孩子是女孩的概率为 1/2。
- 但题目条件是至少有一个男孩,不特指某个孩子,故需考虑所有符合条件的组合。
3.硬币两次正面问题
抛一枚公平硬币(正反面概率各为 1/2),连续抛出两次正面所需的平均抛掷次数(期望值)是多少?
解答:
这是一个经典的概率期望问题,我们需要计算在抛硬币时,连续出现两次正面的平均抛掷次数。这个问题可以通过状态分析和期望值的递归方程来解决。
我们可以通过以下几个步骤解决这个问题:
- 定义问题的状态。
- 建立递归关系。
- 计算期望值。
1. 定义问题的状态
2. 建立递归关系
3.解方程(计算期望值)
结论
连续抛出两次正面的平均所需抛掷次数为 6 次。
补充说明:
拓展:连续n 次正面的期望次数
附录1、三个 概率问题( 三门问题、检查悖论、辛普森悖论)介绍及视频 https://blog.csdn.net/cnds123/article/details/144035271
附录2、概率的几个基本要点
用户可能在学习概率时,感觉自己的直觉和数学结果不一致,背后的原因是什么?
这些问题的核心在于理解概率的“条件性”和“信息更新”,避免直觉误导,严格遵循数学逻辑。
一、概率的“条件性”是什么?
条件性指概率会随着已知信息的变化而动态调整,即 条件概率(Conditional Probability)。
关键公式:
事件 A 和 B 是两个相关联的事件,且 P(B)>0,那么在 B 已经发生的条件下,A 发生的概率用 P(A∣B) 表示。其中
公式中的符号解释
- P(A∣B):在事件 B 已经发生的条件下,事件 AA 发生的概率。
- P(A∩B):事件 A 和 B 同时发生(交集)的概率。
- P(B):事件 B 发生的概率。
【直观理解
条件概率告诉我们,当我们知道某个特定信息(即事件B已经发生)时,这种信息如何影响我们对另一个事件(即事件A)发生可能性的评估。
可以看作是一种“缩小范围”的操作:在整个样本空间中,我们只考虑与B相关的部分,然后计算A在这个范围内出现的比例。】
二、什么是“信息更新”?
信息更新指根据新观测到的数据,动态修正概率估计,即 贝叶斯定理(Bayes' Theorem)。
关键公式:
贝叶斯定理(Bayes' Theorem)是概率论中一个重要的公式,用于计算在已知某些条件下事件发生的概率。它特别擅长处理条件概率问题,即在观察到某些证据后,如何更新对某个事件的信念。其中
公式中的符号解释
- P(A∣B):在事件 B 已经发生的条件下,事件 A 发生的概率(后验概率)。
- P(B∣A):在事件 A 发生的条件下,事件 B 发生的概率(似然)。
- P(A):事件 A 的先验概率,即在没有观察到任何证据之前对 A 的信念。
- P(B):事件 B 的边际概率,即所有可能导致 B 发生的情况的总概率。
【贝叶斯定理的直观理解
贝叶斯定理可以被理解为一种“更新规则”,即当我们获得新信息(观察到事件 B)时,如何调整对原有假设(事件 A)的信念。
1.先验概率 (P(A)):这是我们在观察到证据之前对某个事件发生可能性的初始估计。
2.似然 (P(B∣A)):这是假设 A 为真时,证据 B 出现的可能性。
3.边际概率 (P(B)):这是证据 B 出现的总可能性,无论假设是什么。
4.后验概率 (P(A∣B)):这是在观察到证据后,我们对假设 A 的更新信念。】
三、概率问题的反直觉性的原因:
- 条件概率的动态性:信息变化会彻底改变概率分布。
- 人类思维的认知偏差:启发式思维难以处理组合爆炸、非线性增长等问题。
- 数学逻辑的严谨性:需严格区分样本空间、条件约束和独立性。
关键:将问题转化为数学语言(公式、样本空间、状态转移),而非依赖直觉联想。