基于Qwen2.5大模型的Spark-TTS,零样本语音克隆,CPU可运行之本地部署(Windows篇)

本文已首发于 秋码记录
微信公众号:你我杂志刊
在这里插入图片描述

如果你也想搭建一个与秋码记录一样的网站,可以浏览我的这篇 国内 gitee.com Pages 下线了,致使众多站长纷纷改用 github、gitlab Pages 托管平台

秋码记录网站使用的主题是开源的,目前只在github.com开源。
hugo-theme-kiwi开源地址:https://github.com/zhenqicai/hugo-theme-kiwi

效果可浏览 你我杂志刊

在人工智能时代,语音合成(TTS)技术已成为人机交互的核心组件之一。然而,传统TTS系统长期受限于多阶段架构复杂、语音控制能力弱、跨语言表现差等问题。

基于Qwen2.5大模型的**Spark-TTS**横空出世,凭借其创新的BiCodec编码技术、零样本语音克隆能力和细粒度语音控制,迅速成为开源社区的热点。

技术突破:Spark-TTS的三大创新

1、BiCodec:重新定义语音编码 Spark-TTS首创BiCodec单流语音编码器,将语音分解为两类核心编码:

  • 语义Tokens:低比特率捕捉语言内容,确保信息的高效传输。
  • 全局Tokens:固定长度编码说话人属性(音色、性别、语调等)。 这种设计简化了传统TTS的多模型协作流程,实现端到端生成,推理速度提升30%以上

2、零样本语音克隆:无需训练,秒级复刻

仅需3秒参考音频,Spark-TTS即可生成高度相似的个性化语音,音色一致性(SIM)指标超越同类模型如LLaMA-TTS。其核心在于结合Qwen2.5的语言理解能力与BiCodec的解码精度,突破了传统TTS依赖大量训练数据的限制。

3、细粒度语音控制:从参数到情感的精准调节

  • 粗粒度:性别、情感风格一键切换。
  • 细粒度:音高、语速、停顿时长可逐句微调。 用户甚至可通过文本描述生成虚拟音色(如“沉稳的中年男声,语速加快20%”),远超传统基于参考音频的模拟方式。

功能实测:性能与效果全解析

  1. 多语言与跨语种切换 Spark-TTS支持中英文无缝切换,无需单独训练语言模型。例如,输入混合文本“2025年Q1财报增长15%”,合成语音能自然处理数字与语言边界,避免传统TTS的机械断句问题 。

  2. 语音质量指标

    • 自然度(MOS):评分>4.5(满分5),接近真人水平。

    • 重建质量:在STOI、PESQ等指标上超越VITSFastSpeech2等主流模型。

    • 实时性(RTF)

      :单GPU推理速度达0.15秒/秒,满足实时交互需求。

  3. 实战对比:与其他开源TTS的差异 数据来源:公开评测与社区实测

    项目零样本克隆多语言支持细粒度控制推理速度
    Spark-TTS中英
    CosyVoice2中英中等
    Fish-Speech中英日

本地部署

那么接下来,我们将在本地电脑部署这款开源的文本转语音模型,看看效果是否真如官方所宣传的那般。

我还是一如既往的使用python3自带的venv模块来创建python 虚拟环境,当然,你也是可以使用anaconda或着miniconda等软件来搭建python 虚拟环境

我本地电脑使用python的版本,始终是python 3.10.9,系统则是windows11

创建python虚拟环境
python -m venv Spark-TTS-env
cd Spark-TTS-env/Scripts
activate

在这里插入图片描述

clone推理代码

Spark-TTS的推理代码托管于享誉全球github.com上,倘若你的电脑安装了git,那么直接在Terminal中执行以下命令,便把Spark-TTS推理代码下载到你的电脑硬盘里。

git clone https://github.com/SparkAudio/Spark-TTS.git

在这里插入图片描述

安装项目所需的依赖
pip install -r requirements.txt

在这里插入图片描述

安装CUDA版的torch(可选)

这一步是可选的,项目是可以通过CPU来推理的,也就是刚刚安装的torchCPU版的,如果你想要使用GPU来加速推理,那么,就先卸载CPU版的torch,安装支持GPUtorch

在这里插入图片描述

我们在安装CUDA版torch,其版本尽量于requirements.txt文件中的torch版本一样。

pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124

在这里插入图片描述

在这里插入图片描述

下载模型

1、我们在项目根路径下创建一个名为download_model.py文件,输入以下内容。

from huggingface_hub import snapshot_download
import os

# Set download path
model_dir = "pretrained_models/Spark-TTS-0.5B"

# Check if model already exists
if os.path.exists(model_dir) and len(os.listdir(model_dir)) > 0:
    print("Model files already exist. Skipping download.")
else:
    print("Downloading model files...")
    snapshot_download(
        repo_id="SparkAudio/Spark-TTS-0.5B",
        local_dir=model_dir,
        resume_download=True  # Resumes partial downloads
    )
    print("Download complete!")

在这里插入图片描述

在执行python download_model.py命令之前,你得在Terminal(黑窗口)设置好网络,否则是下载不了模型的。

在这里插入图片描述

2、对于国内网友,长期遭受网络限制,可以在hf-mirror.com上下载模型。

mkdir pretrained_models
git clone https://hf-mirror.com/SparkAudio/Spark-TTS-0.5B pretrained_models/Spark-TTS-0.5B

在这里插入图片描述

运行 webui.py

在这里插入图片描述

等加载好模型后,会在我们电脑默认浏览器中的自动打开一页签。

我们先来使用模型自带的声音,来合成声音。

在这里插入图片描述

接下来,我们选择voice clone功能,来克隆音色,最终合成声音。

我这里使用的是伊万卡-特朗普一段在综艺频道的声音,当然,你也可以使用其他人的声音,前提是得得到别人授权的,否则的话……。

还有,待克隆的声音的采样率得是16KHZwav格式最佳。

在这里插入图片描述

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄齐才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值