《Mobility-Aware Computation Offloading in Edge Computing Using Machine Learning》 论文阅读笔记二

《Mobility-Aware Computation Offloading in Edge Computing Using Machine Learning》 论文阅读笔记二

前言
在上一篇博客中罗列并阐述了文章的主要算法S-OAMC和G-OAMC,在结尾处对两个算法进行了比较,体现了两者的异同,这一篇则介绍实验的结果和评价分析。

Experimental Evaluation

提出本文的两种算法后,通过与其他算法进行比较,体现本文算法的一些特点。

Experimental Setup

对比试验

  1. IP:使用IBM ILOG Concert Technology API for C++ 求解整数规划问题(不一定任何情况都有最优解),作为benchmark。
  2. Best Fit Decreasing(BFD):降序最优适应,一种常见的启发式算法,按照资源需求降序排列,当cloudlet可用时,将app卸载到最近的cloudlet上。
  3. Online Assignment of Mobile applications to Cloudlets (OAMC):S-OAMC的最早版本,但是没有使用基于采样的近似方法,也没有采用矩阵补全作为预测方法。
  4. Sampling-based Online Assignment of Mobile applications to Cloudlets Without using Prediction (S-OAMC-WP):不进行预测的S-OAMC。
  5. Sampling-based Online Assignment of Mobile applications to Cloudlets (S-OAMC)
  6. Greedy Online Assignment of Mobile applications to Cloudlets (G-OAMC)

数据来源

  • 用户位置(x,y):使用DACT(driving)、TheDisney World (Orlando) traces(walking & riding)、The New York City traces(riding & walking)数据集
  • app处理速度p/计算需求w:使用Microsoft Azure VM workload建模
  • app带宽需求b/元数据量md:4G网络中的带宽
  • app的中间数据量id:使用GWA-T-12 trace的存储使用量标记
  • cloudlet位置(x,y):采用均匀分布的方式获得
  • cloudlet的总处理速度p/总带宽b:U(1,20)台VM,每台处理速度为U(25000,50000)MHz,带宽为U(5000, 10000)Mbps。

实验场景
考虑5个实验场景。 γ \gamma γ θ \theta θ的值分别为0.3和3*108。设置 ϵ \epsilon ϵ为0.9, η \eta η为10。
在这里插入图片描述

Comparative Analysis

分析指标有六个:
turnaround time, offloading time, migration time, migration rate, runtime, mobility patterns。

  1. Comparative Analysis on Turnaround Time
    OAMC、S-OAMC、G-OAMC比BFD、S-OAMC-WP的效果好原因:采用了移动轨迹预测
    在这里插入图片描述
  2. Comparative Analysis on Offloading Time and Computation
    Time
    效果都差不多的原因:offloading time由传播时延和传输时延组成,即与id, b, θ \theta θ,fd有关,这些是app本身的特征,与方法无关。同样地,computation time与w,p有关,是app本身的特征。
    在这里插入图片描述
    虽然这两者与算法无关,但分配策略是不同的。表现在资源利用率上,G-OAMC的贪心策略导致app尽可能分配在cloudlet上,从而使得active cloudlet rate是最低的;而OAMC由于未使用采样的方法,从而使得大部分的cloudlet处于active状态。由于OAMC, S-OAMC, S-OAMC-WP都采用了动态规划,其资源利用率相似,细微差别在于是否使用的采样和预测方法。
    在这里插入图片描述
  3. Comparative Analysis on Migration Time
    G-OAMC和S-OAMC的结果相近,都比较好。G-OAMC尽可能将app分配到同一个cloudlet上,减少了迁移的数量。S-OAMC使用采样方法根据代价值对app进行排序,选择出合适的app进行迁移,比未使用采样方法的OAMC更有优势,效果也更好。
    S-OAMC-WP效果最差,因为没有使用预测的方法,在当前时刻才会决定如何迁移,造成了较高迁移时间。次差是BFD,同样没有提前预测未来特征,但是由于其贪心的策略,每次选择卸载到最近的cloudlet上,所以迁移时间要比S-OAMC-WP低一些。
    在这里插入图片描述
  4. Comparative Analysis on Migration Rate
    与migration time的走势相同。
    在这里插入图片描述
  5. Comparative Analysis on Runtime
    rumtime评估时间算法的时间复杂度和可扩展性。
    BFD的runtime最短,接下来是G-OAMC,基于贪心能够快速收敛。S-OAMC获得了多项式的运行时间,比OAMC低了一个数量级,因为使用了采样方法;S-OAMC-WP的运行时间比S-OAMC的长,因为没有使用预测方法,必须在每个时隙去得到分配策略。
    在这里插入图片描述
  6. Comparative Analysis on Mobility Patterns
    评估算法在不同数据集上的迁移率表现,体现算法的可扩展性。G-OAMC和S-OAMC在不同数据集上表现均良好。
    在这里插入图片描述

Percision Analysis

使用矩阵补全方法进行预测时,首先使用20个app的特征值作为训练集进行训练,然后使用已有特征去预测未来特征。改变已知特征的个数,查看预测的错误率。
在这里插入图片描述

Sensitivity Analysis

分析窗口大小w、采样数 η \eta η ϵ \epsilon ϵ对结果的影响。

  1. ϵ \epsilon ϵ定义了结果准确性和取整大小,用于DP-APC中。
    ϵ \epsilon ϵ越大,runtime越小,对migration time没有太大影响。
    This is due to the fact that as increases, the value of increases in DP-APC, leading to a decrease in the maximum rounded value (r*) and, consequently, reducing the size of the dynamic programming array A. Therefore, the runtime decreases for all DP-based approaches (S-OAMC, OAMC, and S-OAMC-WP).
    在这里插入图片描述
  2. η \eta η定义了采样数,用于DP-APC中。
    η \eta η越小,runtime越小,对migration time没有太大影响。
    By increasing the sample size, the size of the dynamic programming array A becomes larger in DP-APC. This leads to an increase in runtime of these approaches.
    在这里插入图片描述在这里插入图片描述
  3. w定义了窗口大小,用于预测。
    w越大,trunaroundtime和migration rate就越小。
    Using higher value of w, these approaches have more information about future time slots, and thus, they can make better offloading decisions, which lead to reduced turnaround time; second, the applications require less migration rate using higher value of w.
    在这里插入图片描述

Conclusion

本文提出S-OAMC和G-OAMC两种算法,使用ML方法进行预测,在数据集上取得了好的效果。未来可考虑保证低turnaround time的基础上,实现energy-aware offoading方法。


参考文献:
【1】E. F. Maleki, L. Mashayekhy and S. M. Nabavinejad, “Mobility-Aware Computation Offloading in Edge Computing Using Machine Learning,” in IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp. 328-340, 1 Jan. 2023, doi: 10.1109/TMC.2021.3085527.
【2】E. F. Maleki and L. Mashayekhy, “Mobility-aware computation offloading in edge computing using prediction,” 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC), Melbourne, VIC, Australia, 2020, pp. 69-74, doi: 10.1109/ICFEC50348.2020.00015.
【3】Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey on Mobile Edge Computing: The Communication Perspective,” in IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358, Fourthquarter 2017, doi: 10.1109/COMST.2017.2745201.
【4】王凌,吴楚格,范文慧.边缘计算资源分配与任务调度优化综述[J].系统仿真学报,2021,33(03):509-520.DOI:10.16182/j.issn1004731x.joss.20-0584.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值